-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathnet1d.py
391 lines (323 loc) · 12.5 KB
/
net1d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
"""
a modularized deep neural network for 1-d signal data, pytorch version
Shenda Hong, Mar 2020
"""
import numpy as np
from collections import Counter
from matplotlib import pyplot as plt
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import Dataset
class MyDataset(Dataset):
def __init__(self, data, label):
self.data = data
self.label = label
def __getitem__(self, index):
return (torch.tensor(self.data[index], dtype=torch.float), torch.tensor(self.label[index], dtype=torch.long))
def __len__(self):
return len(self.data)
class MyConv1dPadSame(nn.Module):
"""
extend nn.Conv1d to support SAME padding
input: (n_sample, in_channels, n_length)
output: (n_sample, out_channels, (n_length+stride-1)//stride)
"""
def __init__(self, in_channels, out_channels, kernel_size, stride, groups=1):
super(MyConv1dPadSame, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.groups = groups
self.conv = torch.nn.Conv1d(
in_channels=self.in_channels,
out_channels=self.out_channels,
kernel_size=self.kernel_size,
stride=self.stride,
groups=self.groups)
def forward(self, x):
net = x
# compute pad shape
in_dim = net.shape[-1]
out_dim = (in_dim + self.stride - 1) // self.stride
p = max(0, (out_dim - 1) * self.stride + self.kernel_size - in_dim)
pad_left = p // 2
pad_right = p - pad_left
net = F.pad(net, (pad_left, pad_right), "constant", 0)
net = self.conv(net)
return net
class MyMaxPool1dPadSame(nn.Module):
"""
extend nn.MaxPool1d to support SAME padding
params:
kernel_size: kernel size
stride: the stride of the window. Default value is kernel_size
input: (n_sample, n_channel, n_length)
"""
def __init__(self, kernel_size):
super(MyMaxPool1dPadSame, self).__init__()
self.kernel_size = kernel_size
self.max_pool = torch.nn.MaxPool1d(kernel_size=self.kernel_size)
def forward(self, x):
net = x
# compute pad shape
p = max(0, self.kernel_size - 1)
pad_left = p // 2
pad_right = p - pad_left
net = F.pad(net, (pad_left, pad_right), "constant", 0)
net = self.max_pool(net)
return net
class Swish(nn.Module):
def forward(self, x):
return x * F.sigmoid(x)
class BasicBlock(nn.Module):
"""
Basic Block:
conv1 -> convk -> conv1
params:
in_channels: number of input channels
out_channels: number of output channels
ratio: ratio of channels to out_channels
kernel_size: kernel window length
stride: kernel step size
groups: number of groups in convk
downsample: whether downsample length
use_bn: whether use batch_norm
use_do: whether use dropout
input: (n_sample, in_channels, n_length)
output: (n_sample, out_channels, (n_length+stride-1)//stride)
"""
def __init__(self, in_channels, out_channels, ratio, kernel_size, stride, groups, downsample, is_first_block=False, use_bn=True, use_do=True):
super(BasicBlock, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.ratio = ratio
self.kernel_size = kernel_size
self.groups = groups
self.downsample = downsample
self.stride = stride if self.downsample else 1
self.is_first_block = is_first_block
self.use_bn = use_bn
self.use_do = use_do
self.middle_channels = int(self.out_channels * self.ratio)
# the first conv, conv1
self.bn1 = nn.BatchNorm1d(in_channels)
self.activation1 = Swish()
self.do1 = nn.Dropout(p=0.5)
self.conv1 = MyConv1dPadSame(
in_channels=self.in_channels,
out_channels=self.middle_channels,
kernel_size=1,
stride=1,
groups=1)
# the second conv, convk
self.bn2 = nn.BatchNorm1d(self.middle_channels)
self.activation2 = Swish()
self.do2 = nn.Dropout(p=0.5)
self.conv2 = MyConv1dPadSame(
in_channels=self.middle_channels,
out_channels=self.middle_channels,
kernel_size=self.kernel_size,
stride=self.stride,
groups=self.groups)
# the third conv, conv1
self.bn3 = nn.BatchNorm1d(self.middle_channels)
self.activation3 = Swish()
self.do3 = nn.Dropout(p=0.5)
self.conv3 = MyConv1dPadSame(
in_channels=self.middle_channels,
out_channels=self.out_channels,
kernel_size=1,
stride=1,
groups=1)
# Squeeze-and-Excitation
r = 2
self.se_fc1 = nn.Linear(self.out_channels, self.out_channels//r)
self.se_fc2 = nn.Linear(self.out_channels//r, self.out_channels)
self.se_activation = Swish()
if self.downsample:
self.max_pool = MyMaxPool1dPadSame(kernel_size=self.stride)
def forward(self, x):
identity = x
out = x
# the first conv, conv1
if not self.is_first_block:
if self.use_bn:
out = self.bn1(out)
out = self.activation1(out)
if self.use_do:
out = self.do1(out)
out = self.conv1(out)
# the second conv, convk
if self.use_bn:
out = self.bn2(out)
out = self.activation2(out)
if self.use_do:
out = self.do2(out)
out = self.conv2(out)
# the third conv, conv1
if self.use_bn:
out = self.bn3(out)
out = self.activation3(out)
if self.use_do:
out = self.do3(out)
out = self.conv3(out) # (n_sample, n_channel, n_length)
# Squeeze-and-Excitation
se = out.mean(-1) # (n_sample, n_channel)
se = self.se_fc1(se)
se = self.se_activation(se)
se = self.se_fc2(se)
se = F.sigmoid(se) # (n_sample, n_channel)
out = torch.einsum('abc,ab->abc', out, se)
# if downsample, also downsample identity
if self.downsample:
identity = self.max_pool(identity)
# if expand channel, also pad zeros to identity
if self.out_channels != self.in_channels:
identity = identity.transpose(-1,-2)
ch1 = (self.out_channels-self.in_channels)//2
ch2 = self.out_channels-self.in_channels-ch1
identity = F.pad(identity, (ch1, ch2), "constant", 0)
identity = identity.transpose(-1,-2)
# shortcut
out += identity
return out
class BasicStage(nn.Module):
"""
Basic Stage:
block_1 -> block_2 -> ... -> block_M
"""
def __init__(self, in_channels, out_channels, ratio, kernel_size, stride, groups, i_stage, m_blocks, use_bn=True, use_do=True, verbose=False):
super(BasicStage, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.ratio = ratio
self.kernel_size = kernel_size
self.groups = groups
self.i_stage = i_stage
self.m_blocks = m_blocks
self.use_bn = use_bn
self.use_do = use_do
self.verbose = verbose
self.block_list = nn.ModuleList()
for i_block in range(self.m_blocks):
# first block
if self.i_stage == 0 and i_block == 0:
self.is_first_block = True
else:
self.is_first_block = False
# downsample, stride, input
if i_block == 0:
self.downsample = True
self.stride = stride
self.tmp_in_channels = self.in_channels
else:
self.downsample = False
self.stride = 1
self.tmp_in_channels = self.out_channels
# build block
tmp_block = BasicBlock(
in_channels=self.tmp_in_channels,
out_channels=self.out_channels,
ratio=self.ratio,
kernel_size=self.kernel_size,
stride=self.stride,
groups=self.groups,
downsample=self.downsample,
is_first_block=self.is_first_block,
use_bn=self.use_bn,
use_do=self.use_do)
self.block_list.append(tmp_block)
def forward(self, x):
out = x
for i_block in range(self.m_blocks):
net = self.block_list[i_block]
out = net(out)
if self.verbose:
print('stage: {}, block: {}, in_channels: {}, out_channels: {}, outshape: {}'.format(self.i_stage, i_block, net.in_channels, net.out_channels, list(out.shape)))
print('stage: {}, block: {}, conv1: {}->{} k={} s={} C={}'.format(self.i_stage, i_block, net.conv1.in_channels, net.conv1.out_channels, net.conv1.kernel_size, net.conv1.stride, net.conv1.groups))
print('stage: {}, block: {}, convk: {}->{} k={} s={} C={}'.format(self.i_stage, i_block, net.conv2.in_channels, net.conv2.out_channels, net.conv2.kernel_size, net.conv2.stride, net.conv2.groups))
print('stage: {}, block: {}, conv1: {}->{} k={} s={} C={}'.format(self.i_stage, i_block, net.conv3.in_channels, net.conv3.out_channels, net.conv3.kernel_size, net.conv3.stride, net.conv3.groups))
return out
class Net1D(nn.Module):
"""
Input:
X: (n_samples, n_channel, n_length)
Y: (n_samples)
Output:
out: (n_samples)
params:
in_channels
base_filters
filter_list: list, filters for each stage
m_blocks_list: list, number of blocks of each stage
kernel_size
stride
groups_width
n_stages
n_classes
use_bn
use_do
"""
def __init__(self, in_channels, base_filters, ratio, filter_list, m_blocks_list, kernel_size, stride, groups_width, n_classes, use_bn=True, use_do=True, verbose=False):
super(Net1D, self).__init__()
self.in_channels = in_channels
self.base_filters = base_filters
self.ratio = ratio
self.filter_list = filter_list
self.m_blocks_list = m_blocks_list
self.kernel_size = kernel_size
self.stride = stride
self.groups_width = groups_width
self.n_stages = len(filter_list)
self.n_classes = n_classes
self.use_bn = use_bn
self.use_do = use_do
self.verbose = verbose
# first conv
self.first_conv = MyConv1dPadSame(
in_channels=in_channels,
out_channels=self.base_filters,
kernel_size=self.kernel_size,
stride=2)
self.first_bn = nn.BatchNorm1d(base_filters)
self.first_activation = Swish()
# stages
self.stage_list = nn.ModuleList()
in_channels = self.base_filters
for i_stage in range(self.n_stages):
out_channels = self.filter_list[i_stage]
m_blocks = self.m_blocks_list[i_stage]
tmp_stage = BasicStage(
in_channels=in_channels,
out_channels=out_channels,
ratio=self.ratio,
kernel_size=self.kernel_size,
stride=self.stride,
groups=out_channels//self.groups_width,
i_stage=i_stage,
m_blocks=m_blocks,
use_bn=self.use_bn,
use_do=self.use_do,
verbose=self.verbose)
self.stage_list.append(tmp_stage)
in_channels = out_channels
# final prediction
self.dense = nn.Linear(in_channels, n_classes)
def forward(self, x):
out = x
# first conv
out = self.first_conv(out)
if self.use_bn:
out = self.first_bn(out)
out = self.first_activation(out)
# stages
for i_stage in range(self.n_stages):
net = self.stage_list[i_stage]
out = net(out)
# final prediction
out = out.mean(-1)
out = self.dense(out)
return out