-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbleu_eval.py
executable file
·123 lines (100 loc) · 3.15 KB
/
bleu_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import math
import operator
import sys
from functools import reduce
def count_ngram(candidate, references, n):
clipped_count = 0
count = 0
r = 0
c = 0
for si in range(len(candidate)):
# Calculate precision for each sentence
ref_counts = []
ref_lengths = []
# Build dictionary of ngram counts
for reference in references:
ref_sentence = reference[si]
ngram_d = {}
words = ref_sentence.strip().split()
ref_lengths.append(len(words))
limits = len(words) - n + 1
# loop through the sentance consider the ngram length
for i in range(limits):
ngram = ' '.join(words[i:i+n]).lower()
if ngram in ngram_d.keys():
ngram_d[ngram] += 1
else:
ngram_d[ngram] = 1
ref_counts.append(ngram_d)
# candidate
cand_sentence = candidate[si]
cand_dict = {}
words = cand_sentence.strip().split()
limits = len(words) - n + 1
for i in range(0, limits):
ngram = ' '.join(words[i:i + n]).lower()
if ngram in cand_dict:
cand_dict[ngram] += 1
else:
cand_dict[ngram] = 1
clipped_count += clip_count(cand_dict, ref_counts)
count += limits
r += best_length_match(ref_lengths, len(words))
c += len(words)
if clipped_count == 0:
pr = 0
else:
pr = float(clipped_count) / count
bp = brevity_penalty(c, r)
return pr, bp
def clip_count(cand_d, ref_ds):
"""Count the clip count for each ngram considering all references"""
count = 0
for m in cand_d.keys():
m_w = cand_d[m]
m_max = 0
for ref in ref_ds:
if m in ref:
m_max = max(m_max, ref[m])
m_w = min(m_w, m_max)
count += m_w
return count
def best_length_match(ref_l, cand_l):
"""Find the closest length of reference to that of candidate"""
least_diff = abs(cand_l-ref_l[0])
best = ref_l[0]
for ref in ref_l:
if abs(cand_l-ref) < least_diff:
least_diff = abs(cand_l-ref)
best = ref
return best
def brevity_penalty(c, r):
if c > r:
bp = 1
else:
bp = math.exp(1-(float(r)/c))
return bp
def geometric_mean(precisions):
return (reduce(operator.mul, precisions)) ** (1.0 / len(precisions))
def BLEU():
score = 0.
count = 0
try:
s = sys.argv[1]
t = sys.argv[2]
count += 1
candidate = [s.strip()]
references = [[t.strip()]]
precisions = []
pr, bp = count_ngram(candidate, references, 1)
precisions.append(pr)
score = geometric_mean(precisions) * bp
print ("BLEU SCORE: " + str(score/count))
except:
print ("Usage: python bleu_eval.py <candidate_sentence> <reference_sentence>")
### Usage: python bleu_eval.py candidate_sentence reference_sentence
### Ref : https://github.com/vikasnar/Bleu
def BLEU_score(candidate, references):
pr, bp = count_ngram(candidate, references, 1)
bleu = geometric_mean([pr]) * bp
return bleu