-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfunctions.py
60 lines (46 loc) · 2.49 KB
/
functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import torch
import torch.nn as nn
class SmoothMaxPool1D(nn.Module):
def __init__(self, kernel_size, stride, temperature=0.01):
super(SmoothMaxPool1D, self).__init__()
self.kernel_size = kernel_size
self.stride = stride
self.temperature = temperature
def forward(self, x):
batch_size, channels, length = x.size()
out_length = (length - self.kernel_size) // self.stride + 1
unfolded = x.unfold(2, self.kernel_size, self.stride)
output = torch.logsumexp(unfolded / self.temperature, dim=-1) * self.temperature
return output
class SmoothMaxPool2D(nn.Module):
def __init__(self, kernel_size, stride, temperature=0.01):
super(SmoothMaxPool2D, self).__init__()
self.kernel_size = kernel_size
self.stride = stride
self.temperature = temperature
def forward(self, x):
batch_size, channels, height, width = x.size()
out_height = (height - self.kernel_size) // self.stride + 1
out_width = (width - self.kernel_size) // self.stride + 1
unfolded = x.unfold(2, self.kernel_size, self.stride).unfold(3, self.kernel_size, self.stride)
unfolded = unfolded.contiguous().view(batch_size, channels, out_height, out_width, self.kernel_size, self.kernel_size)
output = torch.logsumexp(unfolded / self.temperature, dim=(-2, -1)) * self.temperature
return output
class SmoothMaxPool3D(nn.Module):
def __init__(self, kernel_size, stride, temperature=0.01):
super(SmoothMaxPool3D, self).__init__()
self.kernel_size = kernel_size
self.stride = stride
self.temperature = temperature
def forward(self, x):
batch_size, channels, depth, height, width = x.size()
out_depth = (depth - self.kernel_size) // self.stride + 1
out_height = (height - self.kernel_size) // self.stride + 1
out_width = (width - self.kernel_size) // self.stride + 1
unfolded = x.unfold(2, self.kernel_size, self.stride) \
.unfold(3, self.kernel_size, self.stride) \
.unfold(4, self.kernel_size, self.stride)
unfolded = unfolded.contiguous().view(batch_size, channels, out_depth, out_height, out_width,
self.kernel_size, self.kernel_size, self.kernel_size)
output = torch.logsumexp(unfolded / self.temperature, dim=(-2, -1, -3)) * self.temperature
return output