-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCode Challenge_V3.py
305 lines (270 loc) · 14.4 KB
/
Code Challenge_V3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
# -*- coding: utf-8 -*-
"""
Created on Jul 15 02:16:36 2021
@author: Mohammad.Tanhatalab
"""
# External libraries
import pandas as pd
import numpy as np
import re
from datetime import datetime
import xlrd
import matplotlib.pyplot as plt
from sklearn.impute import KNNImputer
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
from sklearn.compose import TransformedTargetRegressor
from sklearn.preprocessing import OrdinalEncoder
from sklearn.feature_selection import VarianceThreshold
import xgboost as xg
from sklearn.pipeline import Pipeline
# =============================================================================
# DataPrepration Class Definition
# =============================================================================
class DataPrepration:
''' Data preparation class includes below Function:
0. Get Data
1. Map the Target Values to Raw Data
2. Create New KPIs
3. Delete Columns with a high proportion of missing values
4. Convert Catagorical columns to Numerical values
5. Selected Features
* Select Features basd on thier variance
* Remove Duplicate Columns
6. Use Imputation to reGenerate the missed data
7. Shuffling the Dataset '''
# Define Class Variable
df_raw = pd. DataFrame()
df_target = pd. DataFrame()
def __init__(self, raw_path, target_path):
# Define Instance variable
self.raw_path = raw_path
self.target_path = target_path
def Get_Data (self):
''' Load Raw and Target CSV files, since the index column is the first
unknown column, so the "Unnamed: 0" column rename to index '''
df_raw = pd.read_csv(self.raw_path, delimiter=';')
df_target = pd.read_csv(self. target_path, delimiter=';')
df_raw.rename(columns={'Unnamed: 0': 'index'}, inplace=True)
return df_raw, df_target
# =========================================================================
# Establish a correspondence Between Raw and Target
# =========================================================================
def Mapping_Raw_to_Target(self, df_raw, df_target, col1, col2):
''' Raw and Target dataset are not matched one-to one correspondence.
By combination of index and groups in Raw and Target dataset,
a new Key has been created, as Index_Groups to map and link
the Target to the Raw data.'''
# Insert the index_Group as primary Key in Raw and Target datasets
df_raw.insert (2,'Index_group',
[(str(df_raw.loc[i][col1].astype(int)) + '_' +
str(df_raw.loc[i][col2].astype(int)))
for i in range (df_raw.shape[0])])
df_target.insert (1,'Index_group',
[(str(df_target.loc[i][col1].astype(int)) + '_' +
str(df_target.loc[i][col2].astype(int)))
for i in range (df_target.shape[0])])
Converted_Dataset = pd.merge(df_raw, df_target, how="inner",
on=["Index_group"] )
Converted_Dataset.drop('index_y',axis = 1, inplace = True)
Converted_Dataset.drop('groups_y',axis = 1, inplace = True)
return Converted_Dataset
# =============================================================================
# Remove Columns with high Missing values
# =============================================================================
def Drop_missed_Column(self, df, col_to_del):
'''Function to delete Columns with a high proportion of missing values,
or one of the Duplicate columns '''
if type(col_to_del) ==list:
for col in col_to_del:
df.pop(col)
elif type(col_to_del) == str:
df.pop(col_to_del)
return df
# =============================================================================
# To Unify time feature
# =============================================================================
def Unifying_timestamp_col(self, df, col_to_convert):
''' Unifying all types of Date and time to %d/%m/%Y %H:%M
in this part the Regex has been used to find the different types of Date time'''
for col in col_to_convert:
for row in range(df.shape[0]):
if (re.match('[3-4][0-9]{4}.[0-9]',str(df.loc[row:row+1][col]))):
df.loc[row:row+1][col] = datetime(*xlrd.xldate_as_tuple(float(df.loc[row:row+1][col]), 0)).strftime('%Y-%m-%d %H:%M:%S')
df.loc[row:row+1][col] = datetime.strptime(df.loc[row:row+1][col], "%Y/%m/%d %H:%M:%S").strftime("%Y/%m/%d %H:%M:%S")
elif (re.match('[0-9]{4}/[0-9]{2}/[0-9]',str(df.loc[row:row+1][col]))):
df.loc[row:row+1][col] = datetime.strptime(str(df.loc[row:row+1][col]), "%Y/%m/%d %H:%M:%S").strftime("%Y/%m/%d %H:%M:%S")
for col in col_to_convert:
df[col] = pd.to_datetime(df[col] , format='%d/%m/%Y %H:%M')
return df
# =============================================================================
# Find the day gap between two dates
# =============================================================================
def Second_Between(self, t1, t2):
''' Calculate the time period between two times, based on Second'''
Distance_sign = str((t2-t1)) # Find To be forward or to be behind.
Distance = str(abs(t2-t1)) # It change to str to use Regex
Date_type = re.findall('[0-9]{2}:[0-9]{2}:[0-9]{2}', Distance)
Sign = Distance_sign.split(' ')[3]
if(len(Date_type)!= 0):
Time = Date_type[0].split(':')
Gap = int(Time[0])*3600+int(Time[1])*60+int(Time[2])
if Sign == '-1':
Gap=Gap*(-1)
else:
Gap = 0
return Gap
# =============================================================================
# Create New KPI
# =============================================================================
def New_KPI(self, df, new_kpi, col1, col2):
'''Create new features (KPI) from timestamp values,
it helps us to make the better of timestamp values'''
# Insert new KPI to the Dataset
df.insert(2, new_kpi,
[ self.Second_Between(df.loc[i:i][col1],
df.loc[i:i][col2])
for i in range(df.shape[0])])
return df
# =============================================================================
# Use Ordinal Encoding to change catagorical columns to numerical values
# =============================================================================
def Catagorical_to_Numerical (self, df, col_to_numerical):
''' Relpace the Categoricall Features with Numerical
by OrdinalEncoder function'''
enc = OrdinalEncoder()
df[col_to_numerical] = enc.fit_transform(df[col_to_numerical])
return df
# =============================================================================
# Remove Duplicate Columns
# =============================================================================
def Transpose (self, df):
''' To remove duplicate columns'''
Trans = df.T
Trans.drop_duplicates( inplace = True)
Trans = Trans.T
return Trans
# =============================================================================
# KNN Imputer
# =============================================================================
def KNN_Imputer(self, df):
''' Replacing NAN (missing) values with
reasonable data with KNN Algorithm.'''
imputer = KNNImputer() # fit on the dataset
imputer.fit(df)
X = imputer.transform(df) # transform the dataset
return X
# =============================================================================
# Remove Columns That Have A Low Variance
# =============================================================================
def Del_Low_Variance(self, df):
'''To make the better performance low variance features have been removed.
Based on tunning hyperparameters the threshold = 0.15 select 26 features
with better performance'''
# define the transform: With this threshold 26 features has been selected
transform = VarianceThreshold(threshold=.15)
X_sel = transform.fit_transform(df) # transform the input data
X = pd.DataFrame(X_sel)
return X
#%%
# =============================================================================
# =============================================================================
# # XGBoost Class
# =============================================================================
# =============================================================================
class XGBoost_Train_Predict:
''' In this Class, th eModel has been trained with XGBoost method'''
# Define Class Variable
X_train = pd.DataFrame()
X_test = pd.DataFrame()
Y_train = pd.DataFrame()
Y_test = pd.DataFrame()
def __init__(self, X, Y, split_percent):
# Define Instance variable
self.X = X
self.Y = Y
self.split_percent = split_percent
def Split (self):
''' Split the Dataset into Test and Train'''
X_train, X_test, Y_train, Y_test = train_test_split(self.X, self.Y, test_size=self.split_percent, random_state=10)
return X_train, X_test, Y_train, Y_test
def Model_Fit (self):
xgb_r = xg.XGBRegressor(objective ='reg:linear',
n_estimators = 360, seed = 123,verbosity = 0)
pipeline = Pipeline(steps=[('normalize', MinMaxScaler()), ('model', xgb_r)])
model = TransformedTargetRegressor(regressor=pipeline, transformer=MinMaxScaler())
model.fit(X_train, Y_train)
return model
# def Evaluate (cls, X, Y):
# from sklearn.model_selection import KFold
# from sklearn.model_selection import cross_val_score
# kfold = KFold(n_splits=10, random_state=None)
# results = cross_val_score(model, X, Y, cv=kfold)
# print("Accuracy: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100))
def Model_Predict(cls, model):
prediction_test = model.predict(X_test)
return prediction_test
#%%
# =============================================================================
# Main Project
# =============================================================================
# Read and load the Feature and Target Data
raw_path = r"C:\1 Research\Interview\Braincourt 2021.06\challange\md_raw_dataset.csv"
target_path = r"C:\1 Research\Interview\Braincourt 2021.06\challange\md_target_dataset.csv"
data_pre = DataPrepration(raw_path,target_path)
df_raw, df_target = data_pre.Get_Data()
# Join the Target and Feature Data
Converted_Dataset = data_pre.Mapping_Raw_to_Target(df_raw, df_target, 'index', 'groups')
# Drop the high missed columns
col_to_del = ['etherium_before_start', 'start_critical_subprocess1','raw_kryptonite', 'pure_seastone', 'opened']
Converted_Dataset = data_pre.Drop_missed_Column(Converted_Dataset, col_to_del)
Converted_Dataset = data_pre.Drop_missed_Column(Converted_Dataset, 'Index_group') # To drop index_group" column
# Unify the Date time columns
col_to_convert = [ 'expected_start', 'start_process', 'start_subprocess1',
'predicted_process_end', 'process_end', 'subprocess1_end',
'reported_on_tower']
Converted_Dataset = data_pre.Unifying_timestamp_col(Converted_Dataset, col_to_convert)
Converted_Dataset = data_pre.Transpose(Converted_Dataset)
# Create New KPIs (Feature)
Converted_Dataset = data_pre.New_KPI(Converted_Dataset, 'Expected_Start_Process', 'expected_start', 'start_process')
Converted_Dataset = data_pre.New_KPI(Converted_Dataset, 'start_time_of_subprocess1', 'start_process', 'start_subprocess1' )
Converted_Dataset = data_pre.New_KPI(Converted_Dataset, 'process_duration','start_process', 'process_end')
Converted_Dataset = data_pre.New_KPI(Converted_Dataset, 'expected_end_process', 'process_end', 'predicted_process_end' )
Converted_Dataset = data_pre.New_KPI(Converted_Dataset, 'subprocess_duration', 'start_process', 'subprocess1_end' )
Converted_Dataset = data_pre.New_KPI(Converted_Dataset, 'whole_process', 'start_process', 'reported_on_tower')
# Convert Categorical to Numerical columns
col_to_numerical = ["super_hero_group","crystal_type", "crystal_supergroup", "Cycle"]
Converted_Dataset = data_pre.Catagorical_to_Numerical (Converted_Dataset, col_to_numerical)
# Remove the old and un-used columns from the DataSet
col_to_del = [ 'when', 'expected_start', 'start_process', 'start_subprocess1',
'predicted_process_end', 'process_end', 'subprocess1_end',
'reported_on_tower']
Converted_Dataset = data_pre.Drop_missed_Column(Converted_Dataset, col_to_del)
# Extract the feature and Target from the Dataset
X = Converted_Dataset.iloc[:,0:-1]
Y = Converted_Dataset.iloc[:,-1]
# Replace the missing values by calculated values
X = data_pre.KNN_Imputer(X)
# Remove low Variance columns from the Dataset
X = data_pre.Del_Low_Variance(X)
# Just to show better vision on the trend of Prediction Shuffel the Dataset
X = X.sample(frac = 1)
Y = X.iloc[:,-1]
X = X.iloc[:,0:-1]
# Define XGBoost from Class of XGBoost_Train_Predict
XGB = XGBoost_Train_Predict(X, Y, 0.015)
X_train, X_test, Y_train, Y_test = XGB.Split()
# Create Model based on Train Data
model = XGB.Model_Fit()
# Predict X_Test
prediction_test = XGB.Model_Predict(model)
# Plot the Acual (Y_Test) and Predicted values
plt.figure(figsize=(17, 6))
plt.plot(np.arange(Y_test.shape[0]), np.array(Y_test),
label='Actual Values')
plt.plot(np.arange(Y_test.shape[0]),np.array(prediction_test),
label='Predicted Values')
plt.legend(loc='upper left')
plt.show()
# Evaluate the Algorithm and show Accuracy
#XGB.Evaluate(X,Y)