An example of the end-result of this project can be seen at the following two visualizations which show how far and with what confidence can one reach in 1h by leaving from center of Zurich at 8:30 AM by following the journeys recommended by a classical journey planner and by ours:
Zurich 8:30AM deterministic itineraries
Zurich 8:30AM itineraries with 95% confidence (our route planner)
Imagine you are a regular user of the public transport system, and you are checking the operator's schedule to meet your friends for a class reunion. The choices are:
-
You could leave in 10mins, and arrive with enough time to spare for gossips before the reunion starts.
-
You could leave now on a different route and arrive just in time for the reunion.
Undoubtedly, if this is the only information available, most of us will opt for 1.
If we now tell you that option 1 carries a fifty percent chance of missing a connection and be late for the reunion. Whereas, option 2 is almost guaranteed to take you there on time. Would you still consider option 1?
Probably not. However, most public transport applications will insist on the first option. This is because they are programmed to plan routes that offer the shortest travel times, without considering the risk factors.
In this final project you will build your own public transport route planner to improve on that. You will reuse the SBB dataset (See next section: Dataset Description).
Given a desired departure, or arrival time, your route planner will compute the fastest route between two stops within a provided uncertainty tolerance expressed as interquartiles. For instance, "what route from A to B is the fastest at least Q% of the time if I want to leave from A (resp. arrive at B) at instant T". Note that uncertainty is a measure of a route not being feasible within the time computed by the algorithm.
In order to answer this question you will need to:
- Model the public transport infrastructure for your route planning algorithm.
- Build a predictive model using historical arrival/departure time data and potentially other sources of data for your public transport network.
- Implement a robust route planning algorithm using this predictive model.
- Implement a method to test and validate your results.
- Implement a web visualization to demonstrate your method.
Solving this problem accurately can be difficult. You are allowed a few simplifying assumptions:
- There is no penalty for assuming that delays or travel times on the public transport network are uncorrelated with one another. You will get extra credits if you do.
- Once a route is computed, a traveller is expected to follow the planned routes to the end, or until it fails with unknown consequences (e.g. miss a connection). You do not need to address the case where travellers are able to defer their decisions and adapt their journey "en route", as more information becomes available. This requires to consider all alternative routes (contingency plans) in the computation of the uncertainty levels, which is more difficult to implement.
- The planner will not need to mitigate the traveller's inconvenience if a plan fails. Two routes with identical travel times under the uncertainty tolerance are equivalent, even if outside this uncertainty tolerance on one route has a much worse outcome than the other.
For this project we will use the data published by the Open Data Platform Swiss Public Transport (https://opentransportdata.swiss).
You can find the dataset in the following two places.
- On HDFS at the path
/datasets/project/
(you must log oniccluster045.iccluster.epfl.ch
). - Or you can download it using the following links.
- https://os.unil.cloud.switch.ch/swift/v1/CFF/2017-09.tar.lzma
- https://os.unil.cloud.switch.ch/swift/v1/CFF/2017-10.tar.lzma
- https://os.unil.cloud.switch.ch/swift/v1/CFF/2017-11.tar.lzma
- https://os.unil.cloud.switch.ch/swift/v1/CFF/2017-12.tar.lzma
- https://os.unil.cloud.switch.ch/swift/v1/CFF/2018-01.tar.lzma
- https://os.unil.cloud.switch.ch/swift/v1/CFF/2018-02.tar.lzma
- https://os.unil.cloud.switch.ch/swift/v1/CFF/2018-03.tar.lzma
- https://os.unil.cloud.switch.ch/swift/v1/CFF/2018-04.tar.lzma
- https://os.unil.cloud.switch.ch/swift/v1/CFF/metadata.tar.gz
The folder contains the actual data istdaten and the station list data BFKOORD_GEO.
Format: the dataset is presented a collection of textfiles with fields separated by ';' (semi-colon). There is one file per day.
Unfortunately, the full description from opentransportdata.swiss is only provided in German. You can use an automated translator (we recommend DeepL) to get more information, but here are the relevant column descriptions:
BETRIEBSTAG
: date of the tripFAHRT_BEZEICHNER
: identifies the tripBETREIBER_ABK
,BETREIBER_NAME
: operator (name will contain the full name, e.g. Schweizerische Bundesbahnen for SBB)PRODUCT_ID
: type of transport, e.g. train, busLINIEN_ID
: for trains, this is the train numberLINIEN_TEXT
,VERKEHRSMITTEL_TEXT
: for trains, the service type (IC, IR, RE, etc.)ZUSATZFAHRT_TF
: boolean, true if this is an additional trip (not part of the regular schedule)FAELLT_AUS_TF
: boolean, true if this trip failed (cancelled or not completed)HALTESTELLEN_NAME
: name of the stopANKUNFTSZEIT
: arrival time at the stop according to scheduleAN_PROGNOSE
: actual arrival time (whenAN_PROGNOSE_STATUS
isGESCHAETZT
)AN_PROGNOSE_STATUS
: look only at lines when this isGESCHAETZT
. This indicates thatAN_PROGNOSE
is the measured time of arrival.ABFAHRTSZEIT
: departure time at the stop according to scheduleAB_PROGNOSE
: actual departure time (whenAN_PROGNOSE_STATUS
isGESCHAETZT
)AB_PROGNOSE_STATUS
: look only at lines when this isGESCHAETZT
. This indicates thatAB_PROGNOSE
is the measured time of arrival.DURCHFAHRT_TF
: boolean, true if the transport does not stop there
Each line of the file represents a stop and contains arrival and departure times. When the stop is the start or end of a journey, the corresponding columns will be empty (ANKUNFTSZEIT
/ABFAHRTSZEIT
).
In some cases, the actual times were not measured so the AN_PROGNOSE_STATUS
/AB_PROGNOSE_STATUS
will be empty or set to PROGNOSE
and AN_PROGNOSE
/AB_PROGNOSE
will be empty.
We will use the SBB data limited around the Zurich area. We will focus on all the stops within 10km of the Zurich train station.
We will grade both your Jupyter-based report (60%) and your 15-minute oral presentation (40%).
We will use the following criteria:
- The clarity and conciseness of the written and oral reports (written: 15 pts, oral: 10 pts)
- The formulation of the problem and its decomposition into smaller tasks (written: 5 pts, oral: 5 pts)
- The originality of the solution (system design, analytics, visualization) (written: 10 pts, oral: 5 pts)
- The quality of the solution (system design, analytics and associated implementation) (written: 20 pts, oral: 10 pts)
- The explanation of the pro's and con's / shortcomings of the proposed solution (written: 10 pts, oral: 10 pts)
The solution and associated implementation & explanations will be weighted across the different parts as follows:
- Design and method used to model the public transport network: 10%
- Design and method used to create the predictive models: 30%
- Route planning algorithm: 30%
- Validation method: 10%
- Visualization: 20%
Before you get started, we offer a few hints:
- Reserve some time to Google-up the state of the art before implementing. There is a substantial amount of work on this topic. Look for time-dependent, or time-varying networks, stochastic route planning under uncertainty and isochrone maps. You should also look in the references provided below.
- You should already be acquainted with the data. However, as you learn more about the state of the art, spend time to better understand your data. Anticipate what can and cannot be done from what is available to you, and plan your design strategy accordingly. Do not hesitate to complete the proposed data sources with your own if necessary.
- Start small with a simple working solution and improve on it. In a first version, assume that all trains and buses are always sharp on time. Focus on creating a sane programming environment that you can use to develop and test your work as it evolves. Next, work-out the risk-aware solution gradually - start with a simple predictive model and improve it. In addition you can test your algorithm on selected pairs of stops before generalizing to the full public transport network under consideration.
We offer a list of useful references as a starting point:
- Adi Botea, Stefano Braghin, "Contingent versus Deterministic Plans in Multi-Modal Journey Planning". ICAPS 2015: 268-272.
- Adi Botea, Evdokia Nikolova, Michele Berlingerio, "Multi-Modal Journey Planning in the Presence of Uncertainty". ICAPS 2013.
- S Gao, I Chabini, "Optimal routing policy problems in stochastic time-dependent networks", Transportation Research Part B: Methodological, 2006.
This section will be updated with the Frequently Asked Questions during the course of this project. Please stay tuned.
- A: Yes, but since we do not have the details of the platforms at each location, you can use a universal formula to come up with a reasonable walking time. Note that your solution must allow connections between different modes of transports, such as from bus to tramways.
- A: Yes, see simplifying assumptions in Problem Description. You will incur no penalty for assuming that the delay of a given train (or other mode of transport, ...), at a given location and time is independent of the delays for all other trains, locations, and times. Even if our experience tells us that this is most of the time not the case. Also, you must assume that you have no real-time delays information at the time you plan your journey, which limits the benefits you could gain by assuming such a dependency.
3 - Q: Can I take advantage of the fact that a connection departs late most of the time to allow a plan that would otherwise not be possible according to the official schedule.
- A: You may discover that you could take advantage of connections that have a high probability of departing late in order to allow a connection. However, this is not recommended, or it should come with a warning. Imagine from a user experience perspective, how would you react if you are being proposed a plan in which a connection is supposed to depart before you arrive. Furthermore, who would you blame if the plan fails: the planner that came up with a theoretically infeasible plan, or the operator who respected their schedule?