This responsitory contains the code of paper "Personalized Outfit Recommendation with Learnable Anchors - CVPR 2021"
-
Clone this responsitory with submodules
git clone --recurse-submodules https://github.com/lzcn/LPAE-Net.git
-
Install submodules
-
torchutils
is my personal responsitory that contains utilities for PyTorch.cd torchutils python setup.py install
-
outfit-datasets
is another responsitory that contains currently used fashion datasets for outfit recommendation.cd outfit-datasets python setup.py install
-
-
In each folder of
outfit-datasets
, use the scripts to prepare the dataset. I will improve theoutfit-datasets
so that you can test the model on different datasets that are not used in the original paper. -
Use the
run_lpae_net.py
to train or test.-
Train LPAE-Net
./run_lpae_net.py train \ --cfg configs/polyvore_630_lpae_u_resnet34_nn.yaml \ --log-dir summaries/polyvore_630_lpae_u_resnet34_nn --gpus 0 \ --name train
-
Evaluate AUC
./run_lpae_net.py evaluate \ --cfg configs/polyvore_630_lpae_u_resnet34_nn.yaml \ --log-dir summaries/polyvore_630_lpae_u_resnet34_nn \ --load-trained summaries/polyvore_630_lpae_u_resnet34_nn/checkpoints/best_model.pt \ --gpus 0 \ --name evalute-auc
-
Evaluate FITB
uncomment the following line in the configuration file to evaluate the FITB using corresponding dataset
dataset: !include "data-fitb.yaml"
./run_lpae_net.py fitb \ --cfg configs/polyvore_630_lpae_u_resnet34_nn.yaml \ --log-dir summaries/polyvore_630_lpae_u_resnet34_nn \ --load-trained summaries/polyvore_630_lpae_u_resnet34_nn/checkpoints/best_model.pt \ --gpus 0 \ --name evalute-fitb
-
-
LPAE-u (ResNet-34-nn) Polyvore-630
-
LPAE-u (ResNet-34-nn) Polyvore-519
ResNet-34-nn reprensents the pretrained image features extracted from ResNet-34, i.e. the backbone is not fine-tuned.
email: zhilu@std.uestc.edu.cn