Skip to content

lynnbgm/Remote_Weather

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

38 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

mini-project-EC463

Sprint information: https://github.com/ianballou/mini-project-EC463/projects/1
Demo website: http://128.31.26.87:5000

Pre-requirements

C compiler, general development tools installed, Python

Steps to run:

  • cd into the root directory of this project
  • Install python-virtualenv
  • Run virtualenv .venv
  • Run source .venv/bin/activate
  • Run pip install flask
  • Run export FLASK_APP=miniproject.py
  • Run pip install flask-wtf
  • Run pip install flask-sqlalchemy
  • Run pip install flask-migrate
  • Run pip install flask-login
  • Run pip install flask-login
  • Run pip install matplotlib
  • Create ~/.config/matplotlib/matplotlibrc
  • Run echo "backend: Agg" > ~/.config/matplotlib/matplotlibrc
  • Install the python tkinter library with a package manager: apt-get, yum, dnf, etc
  • Run flask db upgrade
  • Start the site by running flask run --host=0.0.0.0

Design choices:

  • Web framework: Python Flask
  • Database management: SQLAlchemy
  • Authentication: Database username/email/password
  • Sensor simulation: Upon logging in and loading a user's homepage, sensor data is randomly (but realistically) generated and plotted.
  • Plot display: Plots are generated as PNG files using the Python PyPlot library. These files are numbered and named based on their graph types and related users. They are then rendered in a user's homepage.

Workflow

  1. Register with username, email, password, and # of sensors.
  2. View graphs of sensor data on personal homepage.

Contributors

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 65.0%
  • HTML 27.9%
  • CSS 4.3%
  • Mako 2.8%