Skip to content
/ acerac Public

Actor-Critic with Experience Replay and Autocorrelated Actions

Notifications You must be signed in to change notification settings

lychanl/acerac

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Actor-Critic with Experience Replay and autocorrelated actions

This repository contains original implementation of Actor-Critic with Experience Replay and autocorrelated actions algorithm. Implementation of original Actor-Critic with Experience Replay is also present.

Installation

Prerequisites

Python3 is required.
Note that, steps bellow won't install all of the OpenAI Gym environments. Visit OpenAI Gym repository for more details.

Installation steps

  1. Create new virtual environment:
python3.7 -m venv {name}

Note: it will create the environment folder in your current directory.

  1. Activate the virtual environment (should be run from the same directory as above or full path should be passed):
source {name}/bin/activate 
  1. While in the repository's root directory, install the requirements:
pip install -r requirements.txt
  1. Run the agent:
python run.py {args...}

Example runs

python acer/run.py --algo acer --env_name Pendulum-v0 --gamma 0.95 \
    --lam 0.9 --b 3 --c0 0.3 --c 10 --actor_lr 0.001 --critic_lr 0.002  \
    --actor_layers 20 --critic_layers 50 --memory_size 1000000 \
    --num_parallel_envs 10  --actor_beta_penalty 0.1 --batches_per_env 10
python3.7 acer/run.py --algo acerac --env_name HalfCheetahBulletEnv-v0 \
    --gamma 0.99 --lam 0.9 --b 2 --c0 0.1 --c 10 --actor_lr 0.00003 --critic_lr 0.00006 \
    --actor_layers 256 256  --critic_layers 256 256 --memory_size 1000000 \
    --num_parallel_envs 10 --actor_beta_penalty 0.001 --batches_per_env 10 \
    --num_evaluation_runs 5  --std 0.4  --max_time_steps 3000000 --tau 4 --alpha 0.5

Parameters

TBA

TensorBoard

During the training some statistics like 'loss', mean penalty value and return are being collected and logged into TensorBoard files (logs/ folder).
To view the dashboard run

tensorboard --logdir logs

in the repository's root directory. The dashboard will be available in the browser under the addres http://localhost:6006/

References

TBA

Wawrzyński, Paweł. Real-time reinforcement learning by sequential actor–critics and experience replay. Neural Networks 22.10 (2009): 1484-1497.

Wawrzyński, Paweł, and Ajay Kumar Tanwani. Autonomous reinforcement learning with experience replay. Neural Networks 41 (2013): 156-167.

About

Actor-Critic with Experience Replay and Autocorrelated Actions

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages