-
Notifications
You must be signed in to change notification settings - Fork 0
/
ddpg_agent.py
201 lines (167 loc) · 8.45 KB
/
ddpg_agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import numpy as np
import random
import copy
from collections import namedtuple, deque
from model import Actor, Critic
import torch
import torch.nn.functional as F
import torch.optim as optim
class Agent():
"""Interacts with and learns from the environment."""
def __init__(self, index, config):
"""Initialize an Agent object.
Params
======
state_size (int): dimension of each state
action_size (int): dimension of each action
random_seed (int): random seed
"""
self.index = index
self.config = config
self.seed = random.seed(config.general.seed)
self.device = config.general.device
# Actor Network (w/ Target Network)
self.actor_local = Actor(config).to(self.device)
self.actor_target = Actor(config).to(self.device)
self.actor_optimizer = optim.Adam(self.actor_local.parameters(), lr=config.actor.lr)
# Critic Network (w/ Target Network)
self.critic_local = Critic(config).to(self.device)
self.critic_target = Critic(config).to(self.device)
self.critic_optimizer = optim.Adam(self.critic_local.parameters(), lr=config.critic.lr,
weight_decay=config.hp.weight_decay)
# Noise process
self.noise = OUNoise(config.env.action_size, self.seed)
# Replay memory
self.memory = ReplayBuffer(config)
# Update Frequency
self.t_step = 0
self.update_every = config.hp.update_every
self.tau = config.hp.tau
def step(self, states, actions, rewards, next_states, dones):
"""Save experience in replay memory, and use random sample from buffer to learn."""
# Save experience / reward
# self.memory.add(state, action, reward, next_state, done)
for state, action, reward, next_state, done in zip(states, actions, rewards, next_states, dones):
self.memory.add(state, action, reward, next_state, done)
self.t_step = (self.t_step + 1)%self.update_every
if self.t_step == 0:
# Learn, if enough samples are available in memory
if len(self.memory) > BATCH_SIZE:
experiences = self.memory.sample()
self.learn(experiences, GAMMA)
def act(self, state, add_noise=True):
"""Returns actions for given state as per current policy."""
state = torch.from_numpy(state).float().to(self.device)
self.actor_local.eval()
with torch.no_grad():
action = self.actor_local(state.reshape(1, -1)).cpu().data.numpy()
self.actor_local.train()
if add_noise:
action += self.noise.sample()
return np.clip(action, -1, 1)
def reset(self):
self.noise.reset()
def learn(self, agent_id, experiences, gamma, all_next_actions, all_actions):
"""Update policy and value parameters using given batch of experience tuples.
Params
======
experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples
gamma (float): discount factor
all_next_actions (list): each agent's next_action (as calculated by it's actor)
all_actions (list): each agent's action (as calculated by it's actor)
"""
states, actions, rewards, next_states, dones = experiences
# ---------------------------- update critic ---------------------------- #
# get predicted next-state actions and Q values from target models
self.critic_optimizer.zero_grad()
agent_id = torch.tensor([agent_id]).to(self.device)
actions_next = torch.cat(all_next_actions, dim=1).to(self.device)
with torch.no_grad():
q_targets_next = self.critic_target(next_states, actions_next)
# compute Q targets for current states (y_i)
q_expected = self.critic_local(states, actions)
# q_targets = reward of this timestep + discount * Q(st+1,at+1) from target network
q_targets = rewards.index_select(1, agent_id) + (gamma * q_targets_next * (1 - dones.index_select(1, agent_id)))
# compute critic loss
critic_loss = F.mse_loss(q_expected, q_targets.detach())
self.critic_loss = critic_loss.item() # for tensorboard logging
# minimize loss
critic_loss.backward()
torch.nn.utils.clip_grad_norm_(self.critic_local.parameters(), 1)
self.critic_optimizer.step()
# ---------------------------- update actor ---------------------------- #
# compute actor loss
self.actor_optimizer.zero_grad()
# detach actions from other agents
actions_pred = [actions if i == self.index else actions.detach() for i, actions in enumerate(all_actions)]
actions_pred = torch.cat(actions_pred, dim=1).to(self.device)
actor_loss = -self.critic_local(states, actions_pred).mean()
self.actor_loss = actor_loss.item() # calculate policy gradient
# minimize loss
actor_loss.backward()
self.actor_optimizer.step()
# ----------------------- update target networks ----------------------- #
self.soft_update(self.critic_local, self.critic_target, self.tau)
self.soft_update(self.actor_local, self.actor_target, self.tau)
def soft_update(self, local_model, target_model, tau):
"""Soft update model parameters.
θ_target = τ*θ_local + (1 - τ)*θ_target
Params
======
local_model: PyTorch model (weights will be copied from)
target_model: PyTorch model (weights will be copied to)
tau (float): interpolation parameter
"""
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data)
class OUNoise:
"""Ornstein-Uhlenbeck process."""
def __init__(self, size, seed, mu=0., theta=0.15, sigma=0.2):
"""Initialize parameters and noise process."""
self.size = size
self.mu = mu * np.ones(size)
self.theta = theta
self.sigma = sigma
self.seed = random.seed(seed)
self.reset()
def reset(self):
"""Reset the internal state (= noise) to mean (mu)."""
self.state = copy.copy(self.mu)
def sample(self):
"""Update internal state and return it as a noise sample."""
x = self.state
#dx = self.theta * (self.mu - x) + self.sigma * np.array([random.random() for i in range(len(x))])
dx = self.theta * (self.mu - x) + self.sigma * np.random.standard_normal(self.size)
self.state = x + dx
return self.state
class ReplayBuffer:
"""Fixed-size buffer to store experience tuples."""
def __init__(self, config):
"""Initialize a ReplayBuffer object.
Params
======
buffer_size (int): maximum size of buffer
batch_size (int): size of each training batch
"""
self.action_size = config.env.action_size
self.memory = deque(maxlen=config.hp.buffer_size) # internal memory (deque)
self.batch_size = config.hp.batch_size
self.experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done"])
self.seed = random.seed(config.general.seed)
self.device = config.general.device
def add(self, state, action, reward, next_state, done):
"""Add a new experience to memory."""
e = self.experience(state, action, reward, next_state, done)
self.memory.append(e)
def sample(self):
"""Randomly sample a batch of experiences from memory."""
experiences = random.sample(self.memory, k=self.batch_size)
states = torch.from_numpy(np.vstack([e.state for e in experiences if e is not None])).float().to(self.device)
actions = torch.from_numpy(np.vstack([e.action for e in experiences if e is not None])).float().to(self.device)
rewards = torch.from_numpy(np.vstack([e.reward for e in experiences if e is not None])).float().to(self.device)
next_states = torch.from_numpy(np.vstack([e.next_state for e in experiences if e is not None])).float().to(self.device)
dones = torch.from_numpy(np.vstack([e.done for e in experiences if e is not None]).astype(np.uint8)).float().to(self.device)
return (states, actions, rewards, next_states, dones)
def __len__(self):
"""Return the current size of internal memory."""
return len(self.memory)