详情见服务端代码地址,感谢大佬star
本次由湖南大学和微软亚洲研究院主办,由国家超级计算长沙中心、微软学生俱乐部等承办的华中“Hackathon”创客马拉松大赛,将邀请150名高校中创意、开发、设计、营销达人聚集在一起,在24小时连续不间断工作坊中大展身手,我们将全力以赴让创客精神在华中地区迸发魅力。
此次Hackathon由湖南大学和微软亚洲研究院联合主办,比赛地点为国家超级计算长沙中心。大赛以激励华中地区高校学生的创新精神、创造精神为目标,为有想法、有创意的学生们提供一个共同交流、互相切磋,并将想法付诸实践的大舞台。届时,华中地区150名富有热情的青年创客聚集在一起,共同享受24小时不间断协作开发和学习交流的知识盛宴,让创意的火花时刻迸发。
取个名字真TM难
- XueWenLiao
- ChengChen
- LuoJie
- LiuDong
- WuQin
Surprise Scene
- Android 7.0
- Tensorflow 1.4.1
- Django 2.0.5
- djangorestframework 3.8.2
- Linux with Tensorflow GPU edition + cuDNN
https://github.com/luojie1024/HACK_GAN_MB
Android客户端 | Python服务端+GAN模型 |
---|
###简介:
通过使用Tensorflow,GAN,Django,Android等技术,实现快速造图,来提升沟通效率,用户只需手绘草图,AI将实时生成逼真的效果图.在原型展示,室内装修,服装设计,LOGO设计等领域有广泛的应用.即画即现,AI让沟通变得如此简单.
基于GAN技术,即画即现,快速的将自己的想法转化成图像,提升沟通效率.使用Tensorflow构建GAN模型,将训练好的模型封装,使用Django框架进行服务器的搭建,提供API供客户端调用,本项目使用Android客户端进行演示,将用户手绘草图,通过GAN神经网络转化成十分逼真的效果图.
现代社会人与人之间的交流变得很频繁,每个人都要和不同的对象进行交流,但是并不是每个人都可以很好的表达自己的想法,因此会造成沟通的障碍。比如:当设计原型图时,需要在讨论时及时生成一个可展示的对象,可以准确的展示用户的需求,降低沟通难度。我们的实际就来源于人与人之间沟通难度的存在。
-
降低沟通难度。让人们能够更加准确的表达自己的想法。
-
降低沟通成本。让人们能够更加便捷的使用可以交互的沟通方式。
-
触发使用者的灵感,可以更加全面挖掘使用者的灵感
技术难点为: 客户端与服务器交互图片数据问题
现使用方案: 将用户所画草图以JPEG图片格式保存在本地,将图片用Base64(编码规范)编码后以json的形式post到服务器。服务器将编码过的图片传回到客户端,然后客户端解码为JPEG图片格式以供展示。由于这样的方法数据交互速度及慢,需要优化方案。
未来展望: 采用Google提供的grpc框架实现图片传输,该框架采用HTTP2.0作为数据传输协议,传输图片速度碾压HTTP1.1.
技术难点为: 1.模型的训练 2.模型转化成API,提供服务.
现使用方案: 使用Tensorflow实现GAN模型,将训练好的不同模型封成对应的API,将模型部署到服务端,提供给多终端调用(手机,平板,WEB,PC).
未来展望: 准备使用Tensorflow Serving简化并加速模型到生产的过程,保持服务器架构和API保持不变,安全安全地部署新模型并运行试验。
-
手绘:用户可随意创作,不加任何限制。
-
橡皮擦:擦除画错的部分。
-
直线:用户只能用直线创作。
-
撤销:用户可撤销前一步操作。
-
清空:用户可清空画板。
-
生成图片:创作完成后可即刻生成真是图片。
-
建筑模型:用户可使用五个标签组件:墙、门、窗户、屋檐和房柱来协助创作。
-
街景模型:用户可使用五个标签组件:公路、草坪、汽车、树木和路灯来协助创作。
-
包模型:用户可创作包。
-
鞋模型:用户可创作鞋。.
# clone this repo
git clone git@github.com:luojie1024/HACK_GAN_MB.git
cd HACK_GAN_MB
dataset | example |
---|---|
400 images from CMP Facades dataset. (31MB) Pre-trained: BtoA |
|
2975 images from the Cityscapes training set. (113M) Pre-trained: AtoB BtoA |
|
1096 training images scraped from Google Maps (246M) Pre-trained: AtoB BtoA |
|
50k training images from UT Zappos50K dataset. Edges are computed by HED edge detector + post-processing. (2.2GB) Pre-trained: AtoB |
|
137K Amazon Handbag images from iGAN project. Edges are computed by HED edge detector + post-processing. (8.6GB) Pre-trained: AtoB |
The facades
dataset is the smallest and easiest to get started with.
-
我们的产品未来可以应用到的领域有:装修装潢,建筑设计、服装设计,品牌LOGO、城镇规划、文物复原、动画动漫设计等。
-
给不同行业用户提供更专业的工具包
-
未来当AI模型足够精准,为所有开发者和企业提供api sdk使用
Based on pix2pix by Isola et al.
Image-to-Image Translation with Conditional Adversarial Nets [CVPR 2017]