This repository has been archived by the owner on Jul 24, 2020. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 146
/
ChangeLog
142 lines (121 loc) · 4.91 KB
/
ChangeLog
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
Version 0.6.1 2015-05-11 by luispedro
* Add utils.h to source distribution (patch by Andrew Stromnov)
Version 0.6 2015-04-27 by luispedro
* Update for Python 3
Version 0.5.3 2013-06-19 by luispedro
* Fix MDS for non-array inputs
* Fix MDS bug
* Add return_* arguments to kmeans
* Extend zscore() to work on non-ndarrays
* Add frac_precluster_learner
* Work with older C++ compilers
Version 0.5.2 2013-03-07 by luispedro
* Fix distribution of Eigen with source
Version 0.5.1 2013-01-11 by luispedro
* Add subspace projection kNN
* Export ``pdist`` in milk namespace
* Add Eigen to source distribution
* Add measures.curves.roc
* Add ``mds_dists`` function
* Add ``verbose`` argument to milk.tests.run
Version 0.5 2012-11-05 by luispedro
* Add coordinate-descent based LASSO
* Add unsupervised.center function
* Make zscore work with NaNs (by ignoring them)
* Propagate apply_many calls through transformers
* Much faster SVM classification with means a much faster defaultlearner()
[measured 2.5x speedup on yeast dataset!]
Version 0.4.3 2012-09-19 by luispedro
* Add select_n_best & rank_corr to featureselection
* Add Euclidean MDS
* Add tree multi-class strategy
* Fix adaboost with boolean weak learners (issue #6, reported by audy
(Austin Richardson))
* Add ``axis`` arguments to zscore()
Version 0.4.2 2012-01-16 by luispedro
* Make defaultlearner able to take extra argumentsaudy (Austin Richardson)
* Make ctransforms_model a supervised_model (adds apply_many)
* Add expanded argument to defaultlearner
* Fix corner case in SDA
* Fix repeated_kmeans
* Fix parallel gridminimise on Windows
* Add multi_label argument to normaliselabels
* Add multi_label argument to nfoldcrossvalidation.foldgenerator
* Do not fork a process in gridminimise if nprocs == 1 (makes for easier
debugging, at the cost of slightly more complex code).
* Add milk.supervised.multi_label
* Fix ext.jugparallel when features is a Task
* Add milk.measures.bayesian_significance
Version 0.4.1 2011-08-25 by luispedro
* Fix important bug in multi-process gridsearch
Version 0.4.0 2011-08-24 by luispedro
* Use multiprocessing to take advantage of multi core machines (off by
default).
* Add perceptron learner
* Set random seed in random forest learner
* Add warning to milk/__init__.py if import fails
* Add return value to ``gridminimise``
* Set random seed in ``precluster_learner``
* Implemented Error-Correcting Output Codes for reduction of multi-class
to binary (including probability estimation)
* Add ``multi_strategy`` argument to ``defaultlearner()``
* Make the dot kernel in svm much, much, faster
* Make sigmoidal fitting for SVM probability estimates faster
* Fix bug in randomforest (patch by Wei on milk-users mailing list)
Version 0.3.10 2011-05-10 by luispedro
* Add ext.jugparallel
* parallel nfold crossvalidation using jug
* parallel multiple kmeans runs using jug
* cluster_agreement for non-ndarrays
* Add histogram & normali(z|s)e options to ``milk.kmeans.assign_centroid``
* Fix bug in sda when features were constant for a class
* Add select_best_kmeans
* Added defaultlearner as a better name than defaultclassifier
* Add `measures.curves.precision_recall`
* Add `unsupervised.parzen.parzen`
Version 0.3.9 2011-03-15 by luispedro
* Improve speed of k-nearest neighbour (10x on scikits-learn benchmark)
* Fix gridminize for low count labels
* Improve kmeans on newer numpy (works for larger datasets)
* Add ``folds`` argument to ``nfoldcrossvalidation``
* Add ``assign_centroid`` function in milk.unsupervised.nfoldcrossvalidation
* Faster kmeans by coding centroid recalculation in C++
* Fix bug with non-integer labels for tree learning
Version 0.3.8 2011-02-12 luispedro
* Fix compilation on Windows
Version 0.3.7 2011-02-10 luispedro
* Logistic regression
* Source demos included (in source and documentation)
* Add cluster agreement metrics
* Fix nfoldcrossvalidation bug when using origins
Version 0.3.6 2010-12-17 luispedro
* Unsupervised (1-class) kernel density modeling
* Fix for when SDA returns empty
* weights option to some learners
* stump learner
* Adaboost (result of above changes)
Version 0.3.5 2010-11-3
* Fixes for 64 bit machines.
* Functions in measures.py all have same interface now.
Version 0.3.4 2010-10-31
* Random forest learners
* Decision trees sped up 20x
* Much faster gridsearch (finds optimum without computing all folds)
Version 0.3.3 2010-10-22
* Missing file added to distribution
Version 0.3.2
* kmeans() for distance=mahalanobis
* minimise dependency on scipy
* self-organising maps
* important bug fix in repeated_kmeans
* faster feature selection
Version 0.3.1 2010-09-25
* fix sparse non-negative matrix factorisation
* mean grouped classifier
* update multi classifier to newer interface
Version 0.3 2010-09-23
* no scipy.weave dependency
* flatter namespace
* faster kmeans
* affinity propagation (borrowed from scikits-learn & slightly improved)
* pdist()