-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtrain_oxford.py
48 lines (35 loc) · 1.03 KB
/
train_oxford.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import torch
# hf datasets for easy oxford flowers training
import torchvision.transforms as T
from torch.utils.data import Dataset
from datasets import load_dataset
class OxfordFlowersDataset(Dataset):
def __init__(
self,
image_size
):
self.ds = load_dataset('nelorth/oxford-flowers')['train']
self.transform = T.Compose([
T.Resize((image_size, image_size)),
T.PILToTensor()
])
def __len__(self):
return len(self.ds)
def __getitem__(self, idx):
pil = self.ds[idx]['image']
tensor = self.transform(pil)
return tensor / 255.
flowers_dataset = OxfordFlowersDataset(
image_size = 128
)
# models and trainer
from rectified_flow_pytorch import RectifiedFlow, Unet, Trainer
model = Unet(dim = 64)
rectified_flow = RectifiedFlow(model)
trainer = Trainer(
rectified_flow,
dataset = flowers_dataset,
num_train_steps = 70_000,
results_folder = './results' # samples will be saved periodically to this folder
)
trainer()