-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgenerate_ngrams_data.py
359 lines (313 loc) · 11.6 KB
/
generate_ngrams_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
import random
import argparse
import pickle
import os
import gzip
from pathlib import Path
import json
import re
import pandas as pd
import numpy as np
import torch
import plotly.io as pio
import ipywidgets as widgets
from IPython.display import display, HTML
import plotly.express as px
import plotly.graph_objects as go
from transformer_lens import HookedTransformer
from transformer_lens.hook_points import HookPoint
from tqdm import tqdm
from neel_plotly import *
from utils import (
get_model,
load_language_data,
get_context_effect,
get_common_tokens,
generate_random_prompts,
get_weird_tokens,
get_device,
)
device = get_device()
torch.autograd.set_grad_enabled(False)
torch.set_grad_enabled(False)
SEED = 42
NEURON = 669
LAYER = 3
def set_seeds():
torch.manual_seed(SEED)
np.random.seed(SEED)
random.seed(SEED)
def load_data(
model_name: str, output_dir: Path, data_dir: Path
) -> tuple[
pd.DataFrame, list[int], np.ndarray, list[str], tuple[torch.Tensor, torch.Tensor]
]:
set_seeds()
model = get_model(model_name, 0)
with open(output_dir.joinpath("checkpoint_probe_df.pkl"), "rb") as f:
probe_df = pickle.load(f)
print("Loaded probe_df")
checkpoints: list[int] = []
top_probe: list[int] = []
for checkpoint in probe_df["Checkpoint"].unique():
checkpoint_df = probe_df[probe_df["Checkpoint"] == checkpoint]
top_probe.append(checkpoint_df["MCC"].max())
checkpoints.append(checkpoint)
print("Checkpoint MCC analyzed")
print(top_probe[:10], len(top_probe))
print(checkpoints[:10], len(checkpoints))
accurate_f1_neurons = probe_df[
(probe_df["F1"] > 0.85)
& (probe_df["MeanGermanActivation"] > probe_df["MeanNonGermanActivation"])
][["NeuronLabel", "F1"]].copy()
accurate_f1_neurons = accurate_f1_neurons.sort_values(by="F1", ascending=False)
print(
len(accurate_f1_neurons["NeuronLabel"].unique()),
"neurons with an F1 > 0.85 for German text recognition at any point during training.",
)
good_f1_neurons: np.ndarray = accurate_f1_neurons["NeuronLabel"].unique()
lang_data = load_language_data(data_dir)
german_data = lang_data["de"]
ignore_tokens, _ = get_weird_tokens(model, plot_norms=False)
common_tokens = get_common_tokens(german_data, model, ignore_tokens, k=100)
return probe_df, checkpoints, good_f1_neurons, german_data, common_tokens
def get_deactivate_context_hook(activation_value):
def deactivate_neurons_hook(value, hook):
value[:, :, NEURON] = activation_value
return value
return [(f"blocks.{LAYER}.mlp.hook_post", deactivate_neurons_hook)]
def get_all_non_letter_tokens(model: HookedTransformer):
all_tokens = [i for i in range(model.cfg.d_vocab)]
letter_tokens = []
for token in all_tokens:
str_token = model.to_single_str_token(token)
if not bool(re.search(r"[a-zA-Z]", str_token)):
letter_tokens.append(token)
return torch.LongTensor(letter_tokens)
def get_trigrams(model_name, probe_df, checkpoints, german_data):
downstream_components = (
"blocks.4.hook_attn_out",
"blocks.5.hook_attn_out",
"blocks.4.hook_mlp_out",
"blocks.5.hook_mlp_out",
)
checkpoint = len(checkpoints) - 1
model = get_model(model_name, checkpoint)
mean_english_activation = probe_df[
(probe_df["Checkpoint"] == checkpoint) & (probe_df["NeuronLabel"] == "L3N669")
]["MeanNonGermanActivation"].item()
deactivate_context_hook = get_deactivate_context_hook(mean_english_activation)
def get_low_indirect_effect_loss_increase_interest_measure(
original_loss,
activated_loss,
ablated_loss,
indirect_effect_removal_loss,
direct_effect_removal_loss,
):
# High ablation increase - prompts where the context neuron matters
overall_loss_increase = (ablated_loss - original_loss).flatten()
# High loss increase when removing the indirect effect
indirect_loss_recovery = (
indirect_effect_removal_loss - original_loss
).flatten()
position_wise_min = torch.min(indirect_loss_recovery, overall_loss_increase)
position_wise_min[original_loss.flatten() > 2.5] = 0
max_interest = torch.max(position_wise_min).item()
return position_wise_min, max_interest
non_letter_tokens = get_all_non_letter_tokens(model)
interesting_trigrams = []
for prompt in tqdm(german_data):
(
original_loss,
activated_loss,
ablated_loss,
indirect_effect_removal_loss,
direct_effect_removal_loss,
) = get_context_effect(
prompt,
model,
context_ablation_hooks=deactivate_context_hook,
context_activation_hooks=[],
downstream_components=downstream_components,
)
str_prompt = model.to_str_tokens(prompt)[1:]
(
interest_measure,
max_interest,
) = get_low_indirect_effect_loss_increase_interest_measure(
original_loss,
activated_loss,
ablated_loss,
indirect_effect_removal_loss,
direct_effect_removal_loss,
)
interesting_positions = torch.argwhere(interest_measure > 3)
if len(interesting_positions) > 0:
for position in interesting_positions:
if position > 2:
trigram = "".join(str_prompt[position - 2 : position + 1])
trigram_tokens = model.to_tokens(trigram)
if not torch.any(
torch.isin(trigram_tokens.long().cpu(), non_letter_tokens)
):
interesting_trigrams.append(trigram)
interesting_trigrams = sorted(list(set(interesting_trigrams)))
del model
return interesting_trigrams
def calculate_trigram_losses(
model_name, checkpoints, interesting_trigrams, probe_df, common_tokens
):
downstream_components = (
"blocks.4.hook_attn_out",
"blocks.5.hook_attn_out",
"blocks.4.hook_mlp_out",
"blocks.5.hook_mlp_out",
)
data = []
for checkpoint in tqdm(checkpoints):
model = get_model(model_name, checkpoint)
mean_english_activation = probe_df[
(probe_df["Checkpoint"] == checkpoint)
& (probe_df["NeuronLabel"] == "L3N669")
]["MeanNonGermanActivation"].item()
deactivate_context_hook = get_deactivate_context_hook(mean_english_activation)
for trigram in interesting_trigrams:
prompts = generate_random_prompts(trigram, model, common_tokens, 100, 20)
(
original_metric,
activated_metric,
ablated_metric,
direct_effect_metric,
indirect_effect_metric,
) = get_context_effect(
prompts,
model,
context_ablation_hooks=deactivate_context_hook,
context_activation_hooks=[],
downstream_components=downstream_components,
pos=-1,
)
original_loss = original_metric.mean(0).item()
ablated_loss = ablated_metric.mean(0).item()
direct_loss = direct_effect_metric.mean(0).item()
indirect_loss = indirect_effect_metric.mean(0).item()
data.append(
[
checkpoint,
trigram,
np.mean(original_loss),
np.mean(ablated_loss),
np.mean(direct_loss),
np.mean(indirect_loss),
]
)
context_effect_df = pd.DataFrame(
data,
columns=[
"Checkpoint",
"Trigram",
"Original Loss",
"Ablated Loss",
"Direct Effect Loss",
"Indirect Effect Loss",
],
)
return context_effect_df
def filter_trigram_candidates(
interesting_trigrams: list[str],
model_name: str,
checkpoints: list[int],
german_data: list[str],
probe_df,
common_tokens,
):
checkpoint = len(checkpoints) - 1
model = get_model(model_name, checkpoint)
downstream_components = (
"blocks.4.hook_attn_out",
"blocks.5.hook_attn_out",
"blocks.4.hook_mlp_out",
"blocks.5.hook_mlp_out",
)
mean_english_activation = probe_df[
(probe_df["Checkpoint"] == checkpoint) & (probe_df["NeuronLabel"] == "L3N669")
]["MeanNonGermanActivation"].item()
deactivate_context_hook = get_deactivate_context_hook(mean_english_activation)
original_losses = []
ablated_losses = []
direct_losses = []
indirect_losses = []
for trigram in tqdm(interesting_trigrams):
prompts = generate_random_prompts(trigram, model, common_tokens, 100, 20)
(
original_metric,
activated_metric,
ablated_metric,
direct_effect_metric,
indirect_effect_metric,
) = get_context_effect(
prompts,
model,
context_ablation_hooks=deactivate_context_hook,
context_activation_hooks=[],
downstream_components=downstream_components,
pos=-1,
)
original_losses.append(original_metric.mean(0).item())
ablated_losses.append(ablated_metric.mean(0).item())
direct_losses.append(direct_effect_metric.mean(0).item())
indirect_losses.append(indirect_effect_metric.mean(0).item())
loss_df = pd.DataFrame(
{
"Trigram": interesting_trigrams,
"Original": original_losses,
"Ablated": ablated_losses,
"Direct Effect": direct_losses,
"Indirect Effect": indirect_losses,
}
)
loss_df["Ablation increase"] = loss_df["Ablated"] - loss_df["Original"]
loss_df_filtered = loss_df[
(loss_df["Original"] < 3) & (loss_df["Ablation increase"] > 2)
]
trigrams = loss_df_filtered["Trigram"].tolist()
return trigrams
def process_data(model_name: str, output_dir: Path, data_dir: Path):
probe_df, checkpoints, good_f1_neurons, german_data, common_tokens = load_data(
model_name, output_dir, data_dir
)
print("Loaded data")
interesting_trigrams = get_trigrams(model_name, probe_df, checkpoints, german_data)
print(f"Got trigram candidates (N={len(interesting_trigrams)})")
interesting_trigrams = filter_trigram_candidates(
interesting_trigrams,
model_name,
checkpoints,
german_data,
probe_df,
common_tokens,
)
print(f"Got trigrams (N={len(interesting_trigrams)})")
with open(output_dir.joinpath("low_indirect_loss_trigrams.json"), "w") as f:
json.dump(interesting_trigrams, f)
context_effect_df = calculate_trigram_losses(
model_name, checkpoints, interesting_trigrams, probe_df, common_tokens
)
context_effect_df.to_csv(
output_dir.joinpath("indirect_loss_trigram_losses_checkpoints.csv"), index=False
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
"--model",
default="pythia-70m",
help="Name of model from TransformerLens",
)
parser.add_argument("--output_dir", default="output")
parser.add_argument("--data_dir", default="data/europarl")
args = parser.parse_args()
save_path = os.path.join(args.output_dir, args.model)
os.makedirs(save_path, exist_ok=True)
process_data(args.model, Path(save_path), Path(args.data_dir))