-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathSISR.py
162 lines (145 loc) · 5.71 KB
/
SISR.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# @Time : 2019/2/8 11:22
# @Author : ylin
# Description:
# train script,base on ESPCN
# reference:
# blog: https://blog.csdn.net/aBlueMouse/article/details/78710553
# paper: https://arxiv.org/abs/1609.05158
# code: https://github.com/leftthomas/ESPCN
# dataset row:
# benchmark
# DIV2K
# etc
import time
import torch.utils.data as Data
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
from torchvision import transforms as T
import torch
from os import listdir
from dataloader import DatasetFromFolder
from loss import MyLoss
from net import ESPCN as Net
from config import used_params_file, used_intact_file, save_intact_file, lr, train_time, net_mode, \
dir_train, dir_test, dir_output, save_params_file, work_modes
import sys
class SISR:
def __init__(self, net_mode='from_params'):
if net_mode == 'from_intact':
self.net = torch.load(used_intact_file)
self.net.cuda()
self.optimizer = torch.optim.Adam(self.net.parameters(), lr=lr)
elif net_mode == 'new':
self.net = Net()
self.net.cuda()
self.optimizer = torch.optim.Adam(self.net.parameters(), lr=lr)
elif net_mode == 'from_params':
self.net = Net()
self.net.cuda()
checkpoint = torch.load(used_params_file)
self.net.load_state_dict(checkpoint['net'])
self.optimizer = torch.optim.Adam(self.net.parameters(), lr=lr)
checkpoint['optimizer']['param_groups'][0]['lr'] = lr
self.optimizer.load_state_dict(checkpoint['optimizer'])
print(self.optimizer.state_dict())
else:
print('please select a useful mode to contract neural net')
sys.exit()
def train(self, train_time, visualization=False, dataset_dir=dir_train):
self.net.train()
dataset = DatasetFromFolder(dataset_dir, T.ToTensor(), T.ToTensor())
train_loader = Data.DataLoader(dataset=dataset, batch_size=1, shuffle=True, pin_memory=True)
if visualization:
plt.ion() # for ide test
plt.show()
loss_func = MyLoss()
for epoch in range(train_time):
print(f"epoch {epoch + 1}")
for step, (x, y) in enumerate(train_loader):
# for x, y in train_loader:
b_x, b_y = x.cuda(), y.cuda()
output = self.net(b_x)
loss = loss_func(output, b_y)
if step % 9 == 2 and visualization:
# print(output[0][2:3, 2:3, 40:45])
# print(b_y[0][2:3, 2:3, 40:45])
self.n_img_show((output.cpu()).detach().numpy()[0])
time.sleep(0.5) # for my pitiful laptop
print(loss)
self.optimizer.zero_grad() # clear gradients for this training step
loss.backward() # backpropagation, compute gradients
self.optimizer.step() # apply gradients
# time.sleep(0.1)
self.tmp_save()
def deal(self, input_dir=dir_test + 'X4/', output_dir=dir_output):
self.net.eval()
for filename in listdir(input_dir):
# img2 = plt.imread(input_dir + filename)
# img2 = torch.from_numpy(np.transpose(img2, (2, 0, 1))).unsqueeze(0)
if self.is_image_file(filename):
img = T.ToTensor()(Image.open(input_dir + filename).convert('RGB')).cuda()
out_img = self.net(img.unsqueeze(0))
n_img = (out_img.cpu()).detach().numpy()[0]
self.n_img_save(n_img, output_dir + filename)
def test(self, dataset_dir=dir_test):
self.net.eval()
dataset = DatasetFromFolder(dataset_dir, T.ToTensor(), T.ToTensor())
test_loader = Data.DataLoader(dataset=dataset, batch_size=1, shuffle=True)
plt.ion() # for ide test
plt.show()
loss_func = MyLoss()
for x, y in test_loader:
# print(b_x.size(),b_y)
b_x, b_y = x.cuda(), y.cuda()
output = self.net(b_x)
self.n_img_show((output.cpu()).detach().numpy()[0])
# print(output[0][2:3, 2:3, 40:45])
# print(b_y[0][2:3, 2:3, 40:45])
time.sleep(2)
loss = loss_func(output, b_y)
print(loss)
# region function
@staticmethod
def is_image_file(filename):
return any(filename.endswith(extension) for extension in ['.png', '.jpg', '.jpeg', '.JPG', '.JPEG', '.PNG'])
@staticmethod
def n_img_show(img):
plt.cla()
plt.imshow(np.transpose(img, (1, 2, 0)))
plt.axis('off')
plt.show()
plt.pause(0.1)
@staticmethod
def n_img_save(img, filename):
plt.imsave(filename, np.transpose(img, (1, 2, 0)), format="png")
def submit_save(self, ):
torch.save(self.net, save_intact_file)
def tmp_save(self, ):
state = {'net': self.net.state_dict(), 'optimizer': self.optimizer.state_dict()}
torch.save(state, save_params_file)
# endregion
if __name__ == '__main__':
# params_file = 'net_params_4.pkl'
# lr = 0.000001
# if len(sys.argv) == 4:
# net_mode, work_mode, train_time = sys.argv[1:]
# train_time = int(train_time)
# else:
# print('please check parameter')
# sys.exit()
s = SISR(net_mode)
for work_mode in work_modes:
if work_mode == 'train':
s.train(train_time, True)
elif work_mode == 'deal':
s.deal()
elif work_mode == 'test':
s.test()
elif work_mode == 'intact_save':
s.submit_save()
else:
print('please select todo_mode in train or deal or test')