-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathXGBoostStandardError.py
155 lines (115 loc) · 5.47 KB
/
XGBoostStandardError.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# XGBoost Boosted Decision Tree Classifier: Calculate Standard Error of Model
# Author: Louis Heery
import sys
sys.path.append("../")
sys.path.append("../dataset-and-plotting")
from bdtPlotting import *
from sensitivity import *
from xgboost import XGBClassifier
import time
import threading
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from scipy import stats
def totalSensitivity(A,B,errorA,errorB):
totalSensitivity = np.sqrt(A**2 + B**2)
totalError = np.sqrt(((A*errorA)/np.sqrt(A**2 + B**2))**2 + ((B*errorB)/np.sqrt(A**2 + B**2))**2)
return (totalSensitivity,totalError)
start = time.time()
numberOfIterations = 500
dataset = np.zeros((numberOfIterations, 7))
for i in range (0,numberOfIterations):
print("Training Model " + str(i) + "/" + str(numberOfIterations))
for nJets in [2,3]:
# Defining BDT Parameters
if nJets == 2:
variables = ['mBB', 'dRBB', 'pTB1', 'pTB2', 'MET', 'dPhiVBB', 'dPhiLBmin', 'Mtop', 'dYWH', 'mTW', 'pTV', 'MV1cB1_cont', 'MV1cB2_cont', 'nTrackJetsOR',]
n_estimators = 200 # 150
max_depth = 4 # 6
learning_rate = 0.15 # 0.05
subsample = 0.5 # 0.1
else:
variables = ['mBB', 'dRBB', 'pTB1', 'pTB2', 'MET', 'dPhiVBB', 'dPhiLBmin', 'Mtop', 'dYWH', 'mTW', 'pTV', 'mBBJ', 'pTJ3', 'MV1cB1_cont', 'MV1cB2_cont', 'MV1cJ3_cont','nTrackJetsOR',]
n_estimators = 200 # 150
max_depth = 4 # 6
learning_rate = 0.15 # 0.05
subsample = 0.5 # 0.1
# Reading Data
if nJets == 2:
dfEven = pd.read_csv('../dataset-and-plotting/CSV/VHbb_data_2jet_even.csv')
dfOdd = pd.read_csv('../dataset-and-plotting/CSV/VHbb_data_2jet_odd.csv')
else:
dfEven = pd.read_csv('../dataset-and-plotting/CSV/VHbb_data_3jet_even.csv')
dfOdd = pd.read_csv('../dataset-and-plotting/CSV/VHbb_data_3jet_odd.csv')
# Randomly select 90% of dataset
dfEven90percent = dfEven.sample(frac=0.9)
dfOdd90percent = dfOdd.sample(frac=0.9)
# Initialising BDTs
xgbEven = XGBClassifier(n_estimators=n_estimators,max_depth=max_depth,learning_rate=learning_rate,subsample=subsample)
xgbOdd = XGBClassifier(n_estimators=n_estimators,max_depth=max_depth,learning_rate=learning_rate,subsample=subsample)
# Multi-thread BDT Training
def trainEven():
xgbEven.fit(dfEven90percent[variables], dfEven90percent['Class'], sample_weight=dfEven90percent['training_weight'])
def trainOdd():
xgbOdd.fit(dfOdd90percent[variables], dfOdd90percent['Class'], sample_weight=dfOdd90percent['training_weight'])
# Specify multiple threaded BDT Training
t = threading.Thread(target=trainEven)
t2 = threading.Thread(target=trainOdd)
t.start()
t2.start()
t.join()
t2.join()
# Scoring
scoresEven = xgbOdd.predict_proba(dfEven[variables])[:,1]
scoresOdd = xgbEven.predict_proba(dfOdd[variables])[:,1]
dfEven['decision_value'] = ((scoresEven-0.5)*2)
dfOdd['decision_value'] = ((scores_odd-0.5)*2)
df = pd.concat([dfEven,dfOdd])
# Calculating Sensitivity
if nJets == 2:
sensitivity2Jet = calc_sensitivity_with_error(df)
dataset[i,0] = sensitivity2Jet[0]
dataset[i,1] = sensitivity2Jet[1]
print(str(nJets) + " Jet using the Standard BDT: "+ str(sensitivity2Jet[0]) + " ± "+ str(sensitivity2Jet[1]))
else:
sensitivity3Jet = calc_sensitivity_with_error(df)
dataset[i,2] = sensitivity3Jet[0]
dataset[i,3] = sensitivity3Jet[1]
print(str(nJets) + " Jet using the Standard BDT: "+ str(sensitivity3Jet[0]) + " ± "+ str(sensitivity3Jet[1]))
sensitivityCombined = totalSensitivity(sensitivity2Jet[0],sensitivity3Jet[0],sensitivity2Jet[1],sensitivity3Jet[1])
dataset[i,4] = sensitivityCombined[0] # combined
dataset[i,5] = sensitivityCombined[1] # combined Uncertainty
dataset[i,6] = time.time() - start # time taken
print("Combined Sensitivity", sensitivityCombined[0], "±", sensitivityCombined[1])
print("Total Time Taken", time.time() - start)
########## Gaussian Graph ##########
graphs = ['2 Jets', '3 Jets', 'Combined']
for i in graphs:
if i == '2 Jets':
data = dataset[:,0]
if i == '3 Jets':
data = dataset[:,2]
if i == 'Combined':
data = dataset[:,4]
n, bins, patches = plt.hist((data), 50, density=True, alpha=0.7, rwidth=0.75, color='#071BCB')
# find range for gaussian curve
xmin, xmax = np.percentile(data, 5), np.percentile(data, 95)
lnspc = np.linspace(xmin, xmax, len(data))
m, s = stats.norm.fit(data) # get mean and standard deviation
pdf_g = stats.norm.pdf(lnspc, m, s) # get theoretical values
plt.plot(lnspc, pdf_g, label="Norm", color="red") # plot it
plt.xlabel("Sensitivity")
plt.xticks(rotation=45)
plt.ylabel('Events')
plt.ylim(0,18)
plt.title(i + " (" + r'$\mu = $' + str(round(m, 3)) + ", "+ r'$ \sigma = $' + str(round(s,3)) + ")")
plt.grid(axis='y', alpha=0.75)
name = i.replace(" ", "_") # Add underscores for file name
# Save final figure to pdf file
figureName = "XGBoost_500Iterations_" + str(name) + ".pdf"
fig = plt.gcf()
plt.savefig(figureName, bbox_inches='tight',dpi=300)
plt.show()
print (str(i) + " Mean = ", round(m, 3))
print (str(i) + " Standard Dev. = ", round(s, 3))