Skip to content

Latest commit

 

History

History
57 lines (46 loc) · 4.23 KB

README.md

File metadata and controls

57 lines (46 loc) · 4.23 KB

Higgs ML (Higgs boson Machine Learning Classifiers)

Build Status Build Status

Supervised Machine Learning techniques used to categorise VH, H(bb) Higgs boson decay events using data collected from the Large Hadron Collider, CERN.

alt text

Repo Contents

a) Different BDT Classifiers

b) XGBoost Optimisation

c) Dataset Analysis

a) Dijet-mass Aware ANN

b) Monte Carlo Generator Aware ANN

a) H(bb) Monte Carlo Generated Event Dataset

b) Graph Plotting Files

  • bdtPlotting.py – Scripts used to plot Boosted Decision Tree (BDT) Output Graphs.
  • nnPlotting.py – Scripts used to plot Neural Network (NN) and Adversarial Neural Network (ANN) Output Graphs.
  • sensitivity.py – Scripts used to calculate sensitivity of BDT and NN and ANN Classifiers.

Download Repo

  • Download Link is HERE

  • Fork Repo using:

$ git clone https://github.com/louisheery/higgs-ML.git