Skip to content

Latest commit

 

History

History
313 lines (247 loc) · 17.3 KB

README.md

File metadata and controls

313 lines (247 loc) · 17.3 KB

[Deprecated] OpenAI.mini

As the OpenAI APIs continue to advance at a swift pace, I foresee challenges in dedicating the necessary time to maintain this repository effectively. Regrettably, I might not be able to sustain the level of commitment required to ensure its upkeep going forward. Your understanding and support in this matter would be greatly appreciated. Thank you for your understanding.


This repo implements OpenAI APIs with open source models, for example, open source LLMs for chat, Whisper for audio, SDXL for image and so on. With this repo, you can interact with LLMs using the openai libraries or the LangChain library.

Frontend

OpenAI.mini OpenAI.mini

How to use

1. Install dependencies

pip3 install -r requirements.txt
pip3 install -r app/requirements.txt

If you have make, you can also run with

make install

2. Get frontend

You may build the frontend with yarn yourself, or just download the built package from the release.

Option 1: install the dependencies and build frontend

cd app/frontend
yarn install
yarn build

Option 2: download it from release

  1. Download the dist.tar.gz from release page.

  2. Extract the dist directory and put it in the app/frontend directory

    Please make sure that the directory layout should be like this:

    ┌─hjmao in ~/workspace/openai.mini/app/frontend/dist
    └─± ls
    asset-manifest.json  assets  favicon.ico  index.html  manifest.json  robots.txt  static

3. Set the environment variables, and modify it.

cp .env.example .env
# Modify the `.env` file

4. Download the model weight manually (Optional)

If you have already downloaded the weight files, or you want to manage the model weights in some place, you can specify a MODEL_HUB_PATH in the .env and put the weight files in it. MODEL_HUB_PATH is set to hub by default. OpenAI.mini will first find the model weight in MODEL_HUB_PATH, if it does not exist in it, it will automatically download the weight files from Huggingface by the model name. The MODEL_HUB_PATH directory will be like this

MODEL_HUB_PATH directory layout
┌─hjmao at 573761 in ~/workspace/openai.mini/hub
└─○ tree -L 2
.
├── baichuan-inc
│   ├── Baichuan-13B-Base
│   ├── Baichuan-13B-Chat
│   └── Baichuan2-13B-Chat
├── intfloat
│   ├── e5-large-v2
│   └── multilingual-e5-large
├── meta-llama
│   ├── Llama-2-13b-chat-hf
│   └── Llama-2-7b-chat-hf
├── openai
│   ├── base.pt
│   ├── large-v2.pt
│   ├── medium.en.pt
│   ├── medium.pt
│   ├── small.pt
│   └── tiny.pt
├── Qwen
│   ├── Qwen-7B-Chat
│   └── Qwen-72B-Chat 
├── stabilityai
│   ├── FreeWilly2
│   ├── stable-diffusion-xl-base-0.9
│   └── stable-diffusion-xl-base-1.0
├── thenlper
│   └── gte-large
└── THUDM
    ├── chatglm2-6b
    ├── chatglm3-6b
    └── codegeex2-6b

Notice: the models can be loadded on startup or on the fly.

5. Start server with OpenAI.mini

python3 -m src.api
python3 -m app.server

6. Access the OpenAI.mini services

OpenAI.mini have implemented most APIs of the OpenAI platform and also a ChatGPT-like web frontend. You may access the OpenAI.mini services with the openai libraries or chat with the models in the web frontend.

  • Access as a openai service: You can use openai packages or the Langchain library to access it by setting the openai.api_base="YOUR_OWN_IP:8000/api/v1" and `openai.api_key="none_or_any_other_string". Find more detail examples here.
  • Access as a ChatGPT: You can open it with your web browser with http://YOUR_OWN_IP:8001/index.html?model=MODEL_NAME.

OpenAI API Status

Services API Status Description
Authorization
Models List models ✅ Done
Models Retrieve model ✅ Done
Chat Create chat completion Partial Done Support Multi. LLMs
Completions Create completion
Images Create image ✅ Done
Images Create image edit
Images Create image variation
Embeddings Create embeddings ✅ Done Support Multi. LLMs
Audio Create transcription ✅ Done
Audio Create translation ✅ Done
Files List files ✅ Done
Files Upload file ✅ Done
Files Delete file ✅ Done
Files Retrieve file ✅ Done
Files Retrieve file content ✅ Done
Fine-tuning Create fine-tuning job
Fine-tuning Retrieve fine-tuning job
Fine-tuning Cancel fine-tuning
Fine-tuning List fine-tuning events
Moderations Create moderation
Edits Create edit

Supported Language Models

Model #Params Checkpoint link
FreeWilly2 70B stabilityai/FreeWilly2
Baichuan2-13B-Chat 13B baichuan-inc/Baichuan2-13B-Chat
Baichuan-13B-Chat 13B baichuan-inc/Baichuan-13B-Chat
Llama-2-13b-chat-hf 13B meta-llama/Llama-2-13b-chat-hf
Llama-2-7b-chat-hf 7B meta-llama/Llama-2-7b-chat-hf
Qwen-72B-Chat 72B Qwen/Qwen-72B-Chat
Qwen-7B-Chat 7B Qwen/Qwen-7B-Chat
Qwen-1_8B-Chat 1.8B Qwen/Qwen-1_8B-Chat
internlm-chat-7b 7B internlm/internlm-chat-7b
chatglm3-6b 6B THUDM/chatglm3-6b
chatglm2-6b 6B THUDM/chatglm2-6b
chatglm-6b 6B THUDM/chatglm-6b

Supported Embedding Models

Model Embedding Dim. Sequnce Length Checkpoint link
bge-large-zh 1024 ? BAAI/bge-large-zh
m3e-large 1024 ? moka-ai/m3e-large
text2vec-large-chinese 1024 ? GanymedeNil/text2vec-large-chinese
gte-large 1024 512 thenlper/gte-large
e5-large-v2 1024 512 intfloat/e5-large-v2

Supported Diffusion Modles

Model #Resp Format Checkpoint link
stable-diffusion-xl-base-1.0 b64_json, url stabilityai/stable-diffusion-xl-base-1.0
stable-diffusion-xl-base-0.9 b64_json, url stabilityai/stable-diffusion-xl-base-0.9

Supported Audio Models

Model #Params Checkpoint link
whisper-1 1550 alias for whisper-large-v2
whisper-large-v2 1550 M large-v2
whisper-medium 769 M medium
whisper-small 244 M small
whisper-base 74 M base
whisper-tiny 39 M tiny

Example Code

Stream Chat

import openai

openai.api_base = "http://localhost:8000/api/v1"
openai.api_key = "none"

for chunk in openai.ChatCompletion.create(
    model="Baichuan2-13B-Chat",
    messages=[{"role": "user", "content": "Which moutain is the second highest one in the world?"}],
    stream=True
):
    if hasattr(chunk.choices[0].delta, "content"):
        print(chunk.choices[0].delta.content, end="", flush=True)

Chat

import openai

openai.api_base = "http://localhost:8000/api/v1"
openai.api_key = "none"

resp = openai.ChatCompletion.create(
    model="Baichuan2-13B-Chat",
    messages = [{ "role":"user", "content": "Which moutain is the second highest one in the world?" }]
)
print(resp.choices[0].message.content)

Create Embeddings

import openai

openai.api_base = "http://localhost:8000/api/v1"
openai.api_key = "none"

embeddings = openai.Embedding.create(
  model="gte-large",
  input="The food was delicious and the waiter..."
)

print(embeddings)

List LLM Models

import os
import openai

openai.api_base = "http://localhost:8000/api/v1"
openai.api_key = "none"

openai.Model.list()

Create Image

import os
import openai
from base64 import b64decode
from IPython.display import Image

openai.api_base = "http://localhost:8000/api/v1"
openai.api_key = "none"

response = openai.Image.create(
  prompt="An astronaut riding a green horse",
  n=1,
  size="1024x1024",
  response_format='b64_json'
)

b64_json = response['data'][0]['b64_json']
image = b64decode(b64_json)
Image(image)

Create Transcription

# Cell 1: set openai
import openai

openai.api_base = "http://localhost:8000/api/v1"
openai.api_key = "None"

# Cell 2: create a recorder in notebook
# ===================================================
# sudo apt install ffmpeg
# pip install torchaudio ipywebrtc notebook
# jupyter nbextension enable --py widgetsnbextension

from IPython.display import Audio
from ipywebrtc import AudioRecorder, CameraStream

camera = CameraStream(constraints={'audio': True,'video':False})
recorder = AudioRecorder(stream=camera)
recorder

# Cell 3: transcribe
import os
import openai

temp_file = '/tmp/recording.webm'
with open(temp_file, 'wb') as f:
    f.write(recorder.audio.value)
audio_file = open(temp_file, "rb")

transcript = openai.Audio.transcribe("whisper-1", audio_file)
print(transcript.text)

Acknowledgement

项目参考了很多大佬的代码,例如 @xusenlinzy 大佬的api-for-open-llm, @hiyouga 大佬的LLaMA-Efficient-Tuning 等,表示感谢。

Star History

Star History Chart