-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblock_solvers.hpp
186 lines (172 loc) · 6.7 KB
/
block_solvers.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
#ifndef LKEEGAN_BLOCKCG_BLOCK_SOLVERS_H
#define LKEEGAN_BLOCKCG_BLOCK_SOLVERS_H
#include <algorithm> // only used to check input SBCGrQ shifts
#include "dirac_op.hpp"
#include "fields.hpp"
// BCG inversion of D X = B
// stops iterating when | D X - B |_i / | B |_i < eps for all vectors i
// returns number of times Dirac operator D was called
template <int N_rhs>
int BCG(block_fermion_field<N_rhs>& X, const block_fermion_field<N_rhs>& B,
const dirac_op& D, double eps = 1.e-15, int max_iterations = 1e6) {
// initial guess x = 0
X.setZero();
block_fermion_field<N_rhs> T(X);
block_fermion_field<N_rhs> P(B), R(B);
block_matrix<N_rhs> r2 = R.hermitian_dot(R);
block_matrix<N_rhs> alpha, beta, r2_old;
Eigen::Array<double, N_rhs, 1> residual_norms =
r2.diagonal().real().array().sqrt();
double residual = 1.0;
int iter = 0;
// do while |Ax - b|_i/|b|_i } > eps for all i
while (residual > eps && iter < max_iterations) {
// T = A P
D.op(T, P);
++iter;
// alpha = (P.T)^-1 (R.R)
// use fullPivLu decomposition to invert the hermitian matrix (P.T)^-1
alpha = (P.hermitian_dot(T)).fullPivLu().solve(r2);
// R -= T alpha
R.add(T, (-alpha).eval());
r2_old = r2;
r2 = R.hermitian_dot(R);
beta = r2_old.fullPivLu().solve(r2);
// X += P alpha
X.add(P, alpha);
// P = P beta + R
P.rescale_add(beta, R, 1.0);
residual =
(r2.diagonal().real().array().sqrt() / residual_norms).maxCoeff();
}
return iter;
}
// BCGrQ inversion of D X = B
// stops iterating when | D X - B |_i / | B |_i < eps for all vectors i
// returns number of times Dirac operator D was called
template <int N_rhs>
int BCGrQ(block_fermion_field<N_rhs>& X, const block_fermion_field<N_rhs>& B,
const dirac_op& D, double eps = 1.e-15, int max_iterations = 1e6) {
// initial guess x = 0
X.setZero();
block_fermion_field<N_rhs> T(X), Q(B);
block_matrix<N_rhs> alpha, rho, delta;
// {Q, delta} <- QR(R)
Q.thinQR(delta);
block_fermion_field<N_rhs> P(Q);
// |residual_i| = sqrt(\sum_j R_i^dag R_j) = sqrt(\sum_j delta_ij)
Eigen::Array<double, N_rhs, 1> residual_norms =
delta.rowwise().norm().array();
int iter = 0;
double residual = 1.0;
// do while | AX - B |_j / | B |_j > eps for all j
while (residual > eps && iter < max_iterations) {
// T = A P
D.op(T, P);
++iter;
// alpha = (P.T)^-1 (R.R)
// use fullPivLu decomposition to invert hermitian matrix (P.T)^-1
alpha =
(P.hermitian_dot(T)).fullPivLu().solve(block_matrix<N_rhs>::Identity());
// Q -= T alpha
Q.add(T, (-alpha).eval());
//{Q, rho} <- QR(Q)
Q.thinQR(rho);
// X += P alpha delta
X.add(P, (alpha * delta).eval());
// P = P rho^{\dagger} + Q [where alpha^{\dagger} is upper triangular]
P.rescale_add(rho.adjoint(), Q, 1.0);
delta = rho * delta;
residual = (delta.rowwise().norm().array() / residual_norms).maxCoeff();
}
return iter;
}
// SBCGrQ inversion of (D + sigma_j) X^{sigma_j} = B
// stops iterating when | (D + sigma_0) X^{sigma_0}_i - B_i| / | B_i | < eps for
// all vectors i returns number of times Dirac operator D was called
template <int N_rhs>
int SBCGrQ(std::vector<block_fermion_field<N_rhs>>& X,
const block_fermion_field<N_rhs>& B, const dirac_op& D,
std::vector<double>& sigma, double eps = 1.e-15,
double eps_shifts = 1.e-15, int max_iterations = 1e6) {
// some sanity checks on supplied parameters:
assert(sigma.size() == X.size() &&
"number of shifts does not match number of solution vectors");
assert(sigma[0] >= 0.0 && "shifts must be zero or positive");
assert(std::is_sorted(sigma.begin(), sigma.end()) &&
"shifts must be in ascending order");
int n_shifts = static_cast<int>(sigma.size());
int n_unconverged_shifts = n_shifts;
block_matrix<N_rhs> Identity = block_matrix<N_rhs>::Identity();
block_matrix<N_rhs> alpha, rho, delta;
block_matrix<N_rhs> alpha_inv(Identity), alpha_inv_old, rho_old;
block_fermion_field<N_rhs> T(B), Q(B);
// start from X=0 initial guess
for (int i_shift = 0; i_shift < n_shifts; ++i_shift) {
X[i_shift].setZero();
}
// {Q, delta} <- QR(Q)
Q.thinQR(delta);
rho = delta;
std::vector<block_fermion_field<N_rhs>> P(n_shifts, Q);
// matrices for shifted residuals
block_matrix<N_rhs> beta_s_inv;
using bm_alloc = Eigen::aligned_allocator<block_matrix<N_rhs>>;
std::vector<block_matrix<N_rhs>, bm_alloc> alpha_s(n_shifts, Identity);
std::vector<block_matrix<N_rhs>, bm_alloc> beta_s(n_shifts, Identity);
// main loop
int iter = 0;
// get norm of each vector b in matrix B
// v.norm() == sqrt(\sum_i v_i v_i^*) = l2 norm of vector v
// residual_i = sqrt(\sum_j Q_i^dag Q_j) = sqrt(\sum_j delta_ij)
Eigen::Array<double, N_rhs, 1> b_norm = delta.rowwise().norm().array();
double residual = 1.0;
while (residual > eps && iter < max_iterations) {
// Apply dirac op (with lowest shift) to P[0]:
D.op(T, P[0]);
// do lowest shift as part of dirac op
T.add(P[0], sigma[0]);
++iter;
alpha_inv_old = alpha_inv;
alpha_inv = P[0].hermitian_dot(T);
// Find inverse of alpha^{-1} via fullPivLu decomposition
alpha = alpha_inv.fullPivLu().solve(Identity);
// X[0] = X[0] + P[0] alpha delta
X[0].add(P[0], (alpha * delta).eval());
// Q -= T alpha
Q.add(T, (-alpha).eval());
rho_old = rho;
// in-place thinQR decomposition of residuals matrix Q
Q.thinQR(rho);
delta = rho * delta;
// use maximum over relative residual of lowest shift as residual
residual = (delta.rowwise().norm().array() / b_norm).maxCoeff();
// P <- P S^dag + Q
P[0].rescale_add(rho.adjoint(), Q, 1.0);
// calculate shifted X and P
for (int i_shift = n_unconverged_shifts - 1; i_shift > 0; --i_shift) {
// calculate shifted coefficients
beta_s_inv = Identity + (sigma[i_shift] - sigma[0]) * alpha +
alpha * rho_old * alpha_inv_old *
(Identity - beta_s[i_shift]) * rho_old.adjoint();
beta_s[i_shift] = beta_s_inv.fullPivLu().solve(Identity);
alpha_s[i_shift] =
beta_s[i_shift] * alpha * rho_old * alpha_inv_old * alpha_s[i_shift];
double residual_shift =
((rho * alpha_inv * alpha_s[i_shift]).rowwise().norm().array() /
b_norm)
.maxCoeff();
// update shifted X and P
// X_s = X_s + P_s tmp_betaC
X[i_shift].add(P[i_shift], alpha_s[i_shift]);
// P_s <- P_s tmp_Sdag + R
P[i_shift].rescale_add((beta_s[i_shift] * rho.adjoint()).eval(), Q, 1.0);
// if shift has converged stop updating it
if (residual_shift < eps_shifts) {
--n_unconverged_shifts;
}
}
}
return iter;
}
#endif // LKEEGAN_BLOCKCG_BLOCK_SOLVERS_H