-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathq_LCDM_MCMC.py
200 lines (163 loc) · 6.81 KB
/
q_LCDM_MCMC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
@author: Kerkyra Asvesta
"""
"""
In this PYTHON file I show the MCMC analysis to evaluate the likelihood of the parameters in question for
the standard ΛCDM model using the Pantheon SNIA data.
"""
import multiprocessing as mproc
from multiprocessing import Pool
import numpy as np
from numpy import *
from scipy.integrate import quad
from math import sqrt
import matplotlib.pyplot as plt
from scipy import interpolate, linalg, optimize
from scipy.sparse.linalg import inv
from numpy.linalg import multi_dot
from astropy.constants import c
import emcee
from chainconsumer import ChainConsumer
from chainconsumer.diagnostic import Diagnostic
from matplotlib import rcParams as rcp
rcp['figure.figsize'] = [9, 6]
rcp['figure.dpi'] = 80
rcp['xtick.labelsize'] = 15
rcp['ytick.labelsize'] = 15
rcp['axes.formatter.useoffset'] = False
rcp['axes.linewidth'] = 1.5
rcp['axes.axisbelow'] = False
rcp['xtick.major.size'] = 8
rcp['xtick.minor.size'] = 4
rcp['xtick.labelsize'] = 15
rcp['legend.fontsize'] = 15
rcp['xtick.direction'] = 'in'
rcp['ytick.major.width'] = 2
rcp['ytick.minor.width'] = 2
rcp['font.size'] = 20
### some constants ###
c_km = (c.to('km/s').value)
H0 = 70.
####################################
# #
# import the Pantheon SNIa data #
# #
####################################
# import redshifts (cosmological + heliocentric), apparent magnitudes, error of app.magnitudes, systematic errors
# Get the data from the github repository Pantheon of Dan Scolnic #
# https://github.com/dscolnic/Pantheon/blob/master/lcparam_full_long_zhel.txt #
data = np.loadtxt('/home/kerky/anaconda3/SN1A DATA/PANTHEON_DATA/Scolnic_data_updated.txt', usecols=[1,2,4,5])
### list with all the systematics as found in the PANTHEON catalog ###
# get the full systematics from the same repository #
#https://github.com/dscolnic/Pantheon/blob/master/sys_full_long.txt #
sys = np.genfromtxt('/home/kerky/anaconda3/SN1A DATA/PANTHEON_DATA/systematics.txt', skip_header=1)
### The list sn_names contains all the supernovae names in the PANTHEON catalog ###
sn_names = np.genfromtxt('/home/kerky/anaconda3/SN1A DATA/PANTHEON_DATA/Scolnic_data_updated.txt', usecols=[0],dtype='str')
z_cmb= np.array(data[:,0]) ## CMB redshift
z_hel = np.array(data[:,1]) ## heliocentric redshift
mb = np.array(data[:,2]) ## apparent magnitude
dmb = np.array(data[:,3]) ## error on mb
sqdmb = np.square(dmb) ## array with the square of the mb errors
### Construction of the full systematic covariance matrix ###
st = np.array(sys) ## put the systematics in an array
cov = np.reshape(st, (1048, 1048)) ## build the covariance matrix
er_stat = np.zeros((1048, 1048), float)
er_stat[np.diag_indices_from(er_stat)] = sqdmb
er_total = er_stat + cov
diag = np.array([np.diagonal(er_total)])
size = len(z_cmb)
print(size)
C_covn = np.linalg.inv([er_total]).reshape(1048, 1048)### the covariance matrix
### ΛCDM q parameterization for the whole sample ###
def q_LCDM(z, Om): ### q in LCDM model with w=-1
#up = Om*((1+z)**3)+(1+3*w)*(1-Om)*(1+z)**(3*(1+w))
up = (Om*(1+z)**3) - (2*(1-Om))
#down = Om*((1+z)**3)+(1-Om)*((1+z)**(3*(1+w)))
down = 2*(Om*((1+z)**3) + 1-Om)
return up/(down)
### Hubble parameter ###
def H_z(z,Om):
f = lambda x: (1+q_LCDM(x, Om))/(1+x)
integ = quad(f, 0.0, z)[0]
ex = np.exp(integ)
return ex*(H0)
### luminosity distance ###
def dl(z, Om):
f = lambda y: (1/(H_z(y,Om)))
inte = np.real(quad(f, 0.,z)[0])
return inte*c_km*(1+z)
### Hubble-free luminosity distance ###
def Dl(z, Om):
return (H0/c_km)*(dl(z, Om))
### the theoretical apparent magnitude ###
def m_z(z, Om, Mcal):
#Mcal = M +42.38 - 5*np.log10(cosmo.h)
return np.hstack([5*np.log10(Dl(z[i], Om)) + Mcal for i in range(size)])
### construct the chi squared function ###
def chi(params):
Om = params[0]
Mcal = params[1]
res1 = np.array([m_z(z_cmb, Om, Mcal) - mb]).reshape(1, 1048)
res3 = np.array([m_z(z_cmb, Om, Mcal) - mb]).reshape(1048, )
return np.sum(np.linalg.multi_dot([res1, C_covn, res3]))
#########################
# #
# MCMC #
# #
#########################
### define the prior
### Set up a flat prior on a paramater.
### Out of the bounds, the prior return -infinity, else it returns 0.
def lnprior_lcdm(theta):
om, Mcal = theta
if 0.1 < om < 0.9 and 23.0 < Mcal < 24.0:
return 0.0
return -np.inf
### combine into full log-probability function
def lnprob_lcdm(theta):
lp = lnprior_lcdm(theta)
if not np.isfinite(lp):
return -np.inf
return lp + (-0.5*chi(theta))
### define no of parameters and walkers
### ndiml is the number of dimensions, i.e. the number of free parameters
ndiml, nwalkersl = 2, 100
### initial values
initial = np.array([0.3, 23.8])
posl = [np.array(initial) + 0.0001*np.random.randn(ndiml) for i in range(nwalkersl)]
### run mcmc using multiprocessing
### Run MCMC with Multiple Cores
with Pool() as pool:
samplerl = emcee.EnsembleSampler(nwalkersl, ndiml, lnprob_lcdm, pool=pool)
resultl = samplerl.run_mcmc(posl, 2000, progress = True) #2000 is the number of MCMC steps to take
### The samplerl will give an array with thes shape (2000, 100, 2) giving the parameter values for each walker at each step in the chain.
### Get autocorrelation time
om_ac, M_cal_ac = samplerl.get_autocorr_time(quiet=True)
np.savetxt("fullflatchains_lcdm_2000", samplerl.get_chain(flat=True))
# thin out the chain
flat_samplesl = samplerl.get_chain(discard=20, flat=True, thin=int(max([om_ac, M_cal_ac])))
np.savetxt("flatchains_lcdm_2000 ", flat_samplesl)
print("Number of independent samples is {}".format(len(flat_samplesl)))
### Retrieve the flatchains from the MCMC analysis discarded the burn-in steps
flatchains2000 = np.loadtxt("/home/kerky/anaconda3/test_q/resultsfromq(L)/q_LCDM/flatchains_lcdm_2000")
params = ["Om", "Mcal"]
### plot the chains for each parameter
for i in range(2):
plt.figure()
plt.title(params[i])
x = np.arange(len(flatchains2000[:,i]))
plt.plot(x,flatchains2000[:,i])
plt.show()
### USE CHAIN CONSUMER TO GENERATE PLOTS ###
cc = ChainConsumer()
params = ["Om", "Mcal"]
c = cc.add_chain(flatchains2000[:,:], parameters=params)
c.configure(contour_labels="confidence", kde= True, statistics="max",summary = False, shade_alpha=0.9,tick_font_size=11, label_font_size=15, sigmas=[1, 2], linewidths=1.2, colors="#673AB7", sigma2d = False, shade =True, flip = False)
### The maximum likelihood values for the ΛCDM model can be found using the Analysis class of the Chain Consumer
BF_LCDM = c.analysis.get_summary().values()
bf_om = list(BF_LCDM)[0][1]
bf_mcal = list(BF_LCDM)[1][1]
truth = [bf_om, bf_mcal]
fig = c.plotter.plot(figsize=2.0, extents=[[0.16, 0.40], [23.75, 23.875]], display=True, truth=truth)