-
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsqrtm.py
50 lines (39 loc) · 1.51 KB
/
sqrtm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import torch
from torch.autograd import Function
import numpy as np
import scipy.linalg
class MatrixSquareRoot(Function):
"""Square root of a positive definite matrix.
NOTE: matrix square root is not differentiable for matrices with
zero eigenvalues.
"""
@staticmethod
def forward(ctx, input):
m = input.detach().cpu().numpy().astype(np.float_)
sqrtm = torch.from_numpy(scipy.linalg.sqrtm(m).real).to(input)
ctx.save_for_backward(sqrtm)
return sqrtm
@staticmethod
def backward(ctx, grad_output):
grad_input = None
if ctx.needs_input_grad[0]:
sqrtm, = ctx.saved_tensors
sqrtm = sqrtm.data.cpu().numpy().astype(np.float_)
gm = grad_output.data.cpu().numpy().astype(np.float_)
# Given a positive semi-definite matrix X,
# since X = X^{1/2}X^{1/2}, we can compute the gradient of the
# matrix square root dX^{1/2} by solving the Sylvester equation:
# dX = (d(X^{1/2})X^{1/2} + X^{1/2}(dX^{1/2}).
grad_sqrtm = scipy.linalg.solve_sylvester(sqrtm, sqrtm, gm)
grad_input = torch.from_numpy(grad_sqrtm).to(grad_output)
return grad_input
sqrtm = MatrixSquareRoot.apply
def main():
from torch.autograd import gradcheck
k = torch.randn(20, 10).double()
# Create a positive definite matrix
pd_mat = (k.t().matmul(k)).requires_grad_()
test = gradcheck(sqrtm, (pd_mat,))
print(test)
if __name__ == '__main__':
main()