-
Notifications
You must be signed in to change notification settings - Fork 0
/
DESCRIPTION
18 lines (18 loc) · 1.26 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Package: KRMM
Type: Package
Title: Kernel Ridge Mixed Model
Version: 1.1
Authors@R: person("Laval", "Jacquin", email = "jacquin.julien@gmail.com", role = c("aut", "cre"))
Author: Laval Jacquin [aut, cre]
Maintainer: Laval Jacquin <jacquin.julien@gmail.com>
Description: Solves kernel ridge regression, within the the mixed model framework, for the linear, polynomial, Gaussian, Laplacian and ANOVA kernels. The model components (i.e. fixed and random effects) and variance parameters are estimated using the expectation-maximization (EM) algorithm. All the estimated components and parameters, e.g. BLUP of dual variables and BLUP of random predictor effects for the linear kernel (also known as RR-BLUP), are available. The kernel ridge mixed model (KRMM) is described in Jacquin L, Cao T-V and Ahmadi N (2016) A Unified and Comprehensible View of Parametric and Kernel Methods for Genomic Prediction with Application to Rice. Front. Genet. 7:145. <doi:10.3389/fgene.2016.00145>.
Depends: R (>= 3.3.0)
Imports: stats,MASS,kernlab,cvTools,robustbase,foreach,parallel,doParallel,Matrix
License: GPL-2 | GPL-3
Encoding: UTF-8
LazyData: true
RoxygenNote: 5.0.1
NeedsCompilation: no
Re-packaged: 2024-04-14 10:00:00 UTC; laval_jacquin
Repository: CRAN
Date/Publication: 2017-06-03 17:46:04 UTC