-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpos_tagger.py
111 lines (98 loc) · 3.38 KB
/
pos_tagger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
#!/usr/bin/python3
#
# pos_tagger.py
# A basic LSTM POS Tagger.
# Copyright 2017 Mengxiao Lin <linmx0130@gmail.com>
#
import ud_dataloader
import mxnet as mx
from mxnet import nd, autograd, gluon
from config import train_data_fn as train_data
import config
import random
def getWordPos(data):
words = {}
pos_tag = set()
for sen in data:
for token in sen.tokens:
w = token.form
t = token.pos_tag
if not w in words:
words[w] = 1
else:
words[w] = words[w] + 1
if not t in pos_tag:
pos_tag.add(t)
pos_tag = list(pos_tag)
return words, pos_tag
class TaggerModel(gluon.Block):
def __init__(self, vocab_size, num_embed, num_hidden, tag_count, **kwargs):
super(TaggerModel, self).__init__(**kwargs)
with self.name_scope():
self.embed = gluon.nn.Embedding(vocab_size, num_embed, weight_initializer=mx.init.Uniform(0.1))
self.lstm = gluon.rnn.LSTM(num_hidden, 1, bidirectional=True, input_size=num_embed)
self.tag_cls = gluon.nn.Dense(tag_count, in_units=num_hidden*2)
self.num_hidden = num_embed
self.tag_count = tag_count
def forward(self, inputs):
embed = self.embed(inputs)
s1, s2 = embed.shape
embed = embed.reshape((s1, 1, s2))
hidden = self.lstm(embed)
batch_size, __, hn_size = hidden.shape
hidden.reshape((batch_size, hn_size))
cls = self.tag_cls(hidden)
return cls
def begin_state(self, *args, **kwargs):
return self.rnn.begin_state(*args, **kwargs)
def mapTokenToId(sen: ud_dataloader.UDSentence, word_map:dict):
ret = []
for item in sen.tokens:
ret.append(word_map[item.form])
return ret
def mapTagToId(sen: ud_dataloader.UDSentence, tag_map:dict):
ret = []
for item in sen.tokens:
ret.append(tag_map[item.pos_tag])
return ret
data = ud_dataloader.parseDocument(train_data)
words, pos_tag = getWordPos(data)
word_list = sorted(list(words.keys()))
word_map = {}
for i, w in enumerate(word_list):
word_map[w] = i
pos_tag_map = {}
for i, t in enumerate(pos_tag):
pos_tag_map[t] = i
ctx = mx.gpu(0)
tagger = TaggerModel(len(word_list), 50, 50, len(pos_tag))
tagger.collect_params().initialize(mx.init.Xavier(), ctx=ctx)
trainer = gluon.Trainer(tagger.collect_params(), 'adam', {'learning_rate': 0.01})
loss = gluon.loss.SoftmaxCrossEntropyLoss()
for epoch in range(1, 10+1):
random.shuffle(data)
avg_loss = 0.0
acc_accu = 0.0
acc_total = 0
for i, sen in enumerate(data):
tokens = mapTokenToId(sen, word_map)
tokens = mx.nd.array(tokens, ctx)
tags = mapTagToId(sen, pos_tag_map)
tags = mx.nd.array(tags, ctx)
with autograd.record():
outputs = tagger(tokens)
pred = outputs.argmax(axis=1)
acc_accu += (tags==pred).sum().asscalar()
acc_total += outputs.shape[0]
L = loss(outputs, tags)
L = L.mean()
L.backward()
trainer.step(1)
avg_loss += L.asscalar()
if i % config.prompt_inteval == 0:
avg_loss /= config.prompt_inteval
acc = acc_accu / acc_total
print("Epoch {} sen {} loss={} train acc={}".format(epoch, i, avg_loss, acc))
avg_loss = 0
acc_accu = 0
acc_total = 0