-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathWeek3.1.py
81 lines (70 loc) · 2.38 KB
/
Week3.1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
#!/usr/bin/env python
import rospy, cv2, cv_bridge, numpy
from sensor_msgs.msg import Image
from cv_bridge import CvBridge, CvBridgeError
from std_msgs.msg import String
from sensor_msgs.msg import Image
from geometry_msgs.msg import Twist
from std_msgs.msg import Float32 ,String
from sensor_msgs.msg import LaserScan
class Follower:
global forward_kinematics
wheel_radius =numpy.float32(0.6)
robot_radius =numpy.float32(0.8)
w_r = 0.0
w_l = 0.0
def __init__(self):
cv2.namedWindow("window", 1)
cv2.namedWindow("mask", 2)
cv2.startWindowThread()
self.bridge = CvBridge()
self.image_sub = rospy.Subscriber("/camera/rgb/image_raw",
Image, self.callback)
self.cmd_vel_pub = rospy.Publisher('/cmd_vel_mux/input/teleop',
Twist, queue_size=1)
self.wheel_pub = rospy.Publisher('/wheel_vel_left',Float32,queue_size = 10)
self.twist = Twist()
self.stop = False
def forward_kinematics(w_l, w_r):
c_l = Follower.wheel_radius * w_l
c_r = Follower.wheel_radius * w_r
v = (c_l + c_r) / 2
a = (c_r - c_l) / (2 * Follower.robot_radius)
return (v, a)
def callback(self, msg):
image = self.bridge.imgmsg_to_cv2(msg,desired_encoding='bgr8')
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
self.wheel_pub.publish(0.1)
(v,a) = forward_kinematics(Follower.w_l,Follower.w_r)
lower_green = numpy.array([75,165,128])
upper_green = numpy.array([110,255,255])
mask = cv2.inRange(hsv, lower_green, upper_green)
h, w, d = image.shape
search_top = 1*h/4
search_bot = 3*h/4 + 20
mask[0:search_top, 0:w] = 0
mask[search_bot:h, 0:w] = 0
M = cv2.moments(mask)
#cv2.imshow("Image window", cv_image)
#cv2.imshow("Segmentation", hsv_thresh)
#print("pies", M['m00'])
print("pies", M)
if M['m00'] > 0:
cx = int(M['m10']/M['m00'])
cy = int(M['m01']/M['m00'])
cv2.circle(image, (cx, cy), 20, (0,0,255), -1)
# BEGIN CONTROL
if self.stop == False:
err = cx - w/2
self.twist.linear.x = 0.1
self.twist.angular.z = -float(err) / 200
self.cmd_vel_pub.publish(self.twist)
# END CONTROL
cv2.imshow("window", image)
cv2.imshow("mask", mask)
cv2.waitKey(3)
Follower()
rospy.init_node('image_converter', anonymous=True)
rospy.Rate(10)
rospy.spin()
cv2.destroyAllWindows()