-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot.py
46 lines (35 loc) · 1.45 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import matplotlib.pyplot as plt
import numpy as np
def plot_loss(train_loss, valid_loss, yscale='linear'):
fig = plt.figure(figsize=(8, 6))
maxEpoch = len(train_loss)
maxLoss = 1.1 * float(max(max(train_loss), max(valid_loss)))
minLoss = max(0, 0.9 * float(min(min(train_loss), min(valid_loss))))
plt.plot(range(1, 1 + maxEpoch), train_loss, label='Train', marker='o', markevery=int(maxEpoch / 10))
plt.plot(range(1, 1 + maxEpoch), valid_loss, label='Valid', marker='s', markevery=int(maxEpoch / 10))
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.xticks(range(0, maxEpoch + 1, int(maxEpoch / 5)))
plt.axis([0, maxEpoch, minLoss, maxLoss])
if yscale == 'log':
plt.yscale('log')
# def plot_loss(loss_dict):
# fig = plt.figure()
# tmp = list(loss_dict.values())
# maxEpoch = len(tmp[0])
# stride = np.ceil(maxEpoch / 10)
# maxLoss = float(max(tmp[0])) + 0.1
# minLoss = max(0, float(min(tmp[0])) - 0.1)
# for name, loss in loss_dict.items():
# plt.plot(range(1, 1 + maxEpoch), loss, '-s', label=name)
# plt.xlabel('Epoch')
# plt.ylabel('Loss')
# plt.legend()
# plt.xticks(range(0, maxEpoch + 1, 2))
# plt.axis([0, maxEpoch, minLoss, maxLoss])
# plt.show()
if __name__ == '__main__':
loss = [x for x in range(10, 0, -1)]
acc = [x / 10. for x in range(0, 10)]
plot_loss({'as': [loss, acc]})