-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathincr_pretrain_tinyllama.py
819 lines (715 loc) · 34.4 KB
/
incr_pretrain_tinyllama.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
# Modification by Light Transport Entertainment Inc.
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for causal language modeling (GPT, GPT-2, CTRL, ...) on a text file or a dataset.
Here is the full list of checkpoints on the hub that can be fine-tuned by this script:
https://huggingface.co/models?filter=text-generation
"""
# You can also adapt this script on your own causal language modeling task. Pointers for this are left as comments.
import logging
import numpy as np
import math
import os
import sys
from dataclasses import dataclass, field
from itertools import chain
from typing import Optional, List, Dict, Any, Mapping
from pathlib import Path
import datasets
import torch
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_FOR_CAUSAL_LM_MAPPING,
AutoConfig,
AutoModelForCausalLM,
LlamaForCausalLM,
LlamaTokenizer,
AutoTokenizer,
HfArgumentParser,
Trainer,
TrainingArguments,
is_torch_tpu_available,
set_seed,
BitsAndBytesConfig
)
from transformers.testing_utils import CaptureLogger
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import send_example_telemetry
from transformers.utils.versions import require_version
from sklearn.metrics import accuracy_score
from peft import LoraConfig, TaskType, get_peft_model, PeftModel, get_peft_model_state_dict
from peft.tuners.lora import LoraLayer
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
from datasets import load_dataset, concatenate_datasets
from tokenizers import Tokenizer
jp_vocab_size = 51470
#def get_embed_size(nvocab, m = 64):
# return m * (round(nvocab / m) + 1)
class SavePeftModelCallback(transformers.TrainerCallback):
def save_model(self, args, state, kwargs):
if state.best_model_checkpoint is not None:
checkpoint_folder = os.path.join(state.best_model_checkpoint, "pt_lora_model")
else:
checkpoint_folder = os.path.join(args.output_dir, f"{PREFIX_CHECKPOINT_DIR}-{state.global_step}")
peft_model_path = os.path.join(checkpoint_folder, "pt_lora_model")
kwargs["model"].save_pretrained(peft_model_path)
kwargs["tokenizer"].save_pretrained(peft_model_path)
def on_save(self, args, state, control, **kwargs):
self.save_model(args, state, kwargs)
return control
def on_train_end(self, args, state, control, **kwargs):
peft_model_path = os.path.join(args.output_dir, "pt_lora_model")
kwargs["model"].save_pretrained(peft_model_path)
kwargs["tokenizer"].save_pretrained(peft_model_path)
def prepare_model_for_kbit_training(model, use_gradient_checkpointing=True):
r"""
This method wraps the entire protocol for preparing a model before running a training. This includes:
1- Cast the layernorm in fp32 2- making output embedding layer require grads 3- Add the upcasting of the lm
head to fp32
Args:
model, (`transformers.PreTrainedModel`):
The loaded model from `transformers`
"""
loaded_in_kbit = getattr(model, "is_loaded_in_8bit", False) or getattr(model, "is_loaded_in_4bit", False)
for name, param in model.named_parameters():
# freeze base model's layers
param.requires_grad = False
# cast all non INT8/INT4 parameters to fp32
for param in model.parameters():
if ((param.dtype == torch.float16) or (param.dtype == torch.bfloat16)) and loaded_in_kbit:
param.data = param.data.to(torch.float32)
for name, module in model.named_modules():
if 'norm' in name:
module = module.to(torch.float32)
if loaded_in_kbit and use_gradient_checkpointing:
# For backward compatibility
if hasattr(model, "enable_input_require_grads"):
model.enable_input_require_grads()
else:
def make_inputs_require_grad(module, _input, output):
output.requires_grad_(True)
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
# enable gradient checkpointing for memory efficiency
model.gradient_checkpointing_enable()
return model
def accuracy(predictions, references, normalize=True, sample_weight=None):
return {
"accuracy": float(
accuracy_score(references, predictions, normalize=normalize, sample_weight=sample_weight)
)
}
def compute_metrics(eval_preds):
preds, labels = eval_preds
# preds have the same shape as the labels, after the argmax(-1) has been calculated
# by preprocess_logits_for_metrics but we need to shift the labels
labels = labels[:, 1:].reshape(-1)
preds = preds[:, :-1].reshape(-1)
return accuracy(predictions=preds, references=labels)
def preprocess_logits_for_metrics(logits, labels):
if isinstance(logits, tuple):
# Depending on the model and config, logits may contain extra tensors,
# like past_key_values, but logits always come first
logits = logits[0]
return logits.argmax(dim=-1)
def fault_tolerance_data_collator(features: List) -> Dict[str, Any]:
if not isinstance(features[0], Mapping):
features = [vars(f) for f in features]
first = features[0]
batch = {}
# Special handling for labels.
# Ensure that tensor is created with the correct type
# (it should be automatically the case, but let's make sure of it.)
if "label" in first and first["label"] is not None:
label = first["label"].item() if isinstance(first["label"], torch.Tensor) else first["label"]
dtype = torch.long if isinstance(label, int) else torch.float
batch["labels"] = torch.tensor([f["label"] for f in features], dtype=dtype)
elif "label_ids" in first and first["label_ids"] is not None:
if isinstance(first["label_ids"], torch.Tensor):
batch["labels"] = torch.stack([f["label_ids"] for f in features])
else:
dtype = torch.long if isinstance(first["label_ids"][0], int) else torch.float
batch["labels"] = torch.tensor([f["label_ids"] for f in features], dtype=dtype)
# Handling of all other possible keys.
# Again, we will use the first element to figure out which key/values are not None for this model.
try:
for k, v in first.items():
if k not in ("label", "label_ids") and v is not None and not isinstance(v, str):
if isinstance(v, torch.Tensor):
batch[k] = torch.stack([f[k] for f in features])
elif isinstance(v, np.ndarray):
batch[k] = torch.tensor(np.stack([f[k] for f in features]))
else:
batch[k] = torch.tensor([f[k] for f in features])
except ValueError: # quick fix by simply take the first example
for k, v in first.items():
if k not in ("label", "label_ids") and v is not None and not isinstance(v, str):
if isinstance(v, torch.Tensor):
batch[k] = torch.stack([features[0][k]] * len(features))
elif isinstance(v, np.ndarray):
batch[k] = torch.tensor(np.stack([features[0][k]] * len(features)))
else:
batch[k] = torch.tensor([features[0][k]] * len(features))
return batch
MODEL_CONFIG_CLASSES = list(MODEL_FOR_CAUSAL_LM_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
"""
model_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": (
"The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."
)
},
)
tokenizer_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": (
"The tokenizer for weights initialization.Don't set if you want to train a model from scratch."
)
},
)
model_type: Optional[str] = field(
default=None,
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
)
config_overrides: Optional[str] = field(
default=None,
metadata={
"help": (
"Override some existing default config settings when a model is trained from scratch. Example: "
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
)
},
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
},
)
torch_dtype: Optional[str] = field(
default=None,
metadata={
"help": (
"Override the default `torch.dtype` and load the model under this dtype. If `auto` is passed, the "
"dtype will be automatically derived from the model's weights."
),
"choices": ["auto", "bfloat16", "float16", "float32"],
},
)
def __post_init__(self):
if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
raise ValueError(
"--config_overrides can't be used in combination with --config_name or --model_name_or_path"
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_dir: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
streaming: bool = field(default=False, metadata={"help": "Enable streaming mode"})
block_size: Optional[int] = field(
default=None,
metadata={
"help": (
"Optional input sequence length after tokenization. "
"The training dataset will be truncated in block of this size for training. "
"Default to the model max input length for single sentence inputs (take into account special tokens)."
)
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
validation_split_percentage: Optional[float] = field(
default=0.05,
metadata={
"help": "The percentage of the train set used as validation set in case there's no validation split"
},
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
keep_linebreaks: bool = field(
default=True, metadata={"help": "Whether to keep line breaks when using TXT files or not."}
)
data_cache_dir: Optional[str] = field(default="./", metadata={"help": "The datasets processed stored"})
def __post_init__(self):
if self.streaming:
require_version("datasets>=2.0.0", "The streaming feature requires `datasets>=2.0.0`")
@dataclass
class MyTrainingArguments(TrainingArguments):
trainable : Optional[str] = field(default="q_proj,v_proj")
lora_rank : Optional[int] = field(default=8)
lora_dropout : Optional[float] = field(default=0.1)
lora_alpha : Optional[float] = field(default=32.)
modules_to_save : Optional[str] = field(default=None)
debug_mode : Optional[bool] = field(default=False)
peft_path : Optional[str] = field(default=None)
flash_attn : Optional[bool] = field(default=False)
double_quant: Optional[bool] = field(default=True)
quant_type: Optional[str] = field(default="nf4")
load_in_kbits: Optional[int] = field(default=16)
logger = logging.getLogger(__name__)
def main():
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, MyTrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
#if training_args.flash_attn:
# from flash_attn_patch import replace_llama_attn_with_flash_attn
# replace_llama_attn_with_flash_attn()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_clm", model_args, data_args)
# Setup logging
logging.basicConfig(format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO, # if training_args.local_rank in [-1, 0] else logging.WARN,
handlers=[logging.StreamHandler(sys.stdout)],)
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# transformers.tokenization_utils.logging.set_verbosity_warning()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Set seed before initializing model.
set_seed(training_args.seed)
config_kwargs = {
"cache_dir": model_args.cache_dir,
"revision": model_args.model_revision,
"use_auth_token": True if model_args.use_auth_token else None,
}
if model_args.config_name:
config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
elif model_args.model_name_or_path:
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
else:
config = CONFIG_MAPPING[model_args.model_type]()
logger.warning("You are instantiating a new config instance from scratch.")
if model_args.config_overrides is not None:
logger.info(f"Overriding config: {model_args.config_overrides}")
config.update_from_string(model_args.config_overrides)
logger.info(f"New config: {config}")
tokenizer_kwargs = {
"cache_dir": model_args.cache_dir,
"use_fast": model_args.use_fast_tokenizer,
"revision": model_args.model_revision,
"padding": True,
"use_auth_token": True if model_args.use_auth_token else None,
}
#if model_args.tokenizer_name:
# tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
if model_args.tokenizer_name_or_path:
tokenizer = LlamaTokenizer.from_pretrained(model_args.tokenizer_name_or_path, **tokenizer_kwargs)
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script."
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
tokenizer.add_eos_token = True
# Preprocessing the datasets.
# First we tokenize all the texts.
# since this will be pickled to avoid _LazyModule error in Hasher force logger loading before tokenize_function
tok_logger = transformers.utils.logging.get_logger("transformers.tokenization_utils_base")
def tokenize_function(examples):
with CaptureLogger(tok_logger) as cl:
output = tokenizer(examples["text"])
# clm input could be much much longer than block_size
if "Token indices sequence length is longer than the" in cl.out:
tok_logger.warning(
"^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits"
" before being passed to the model."
)
return output
if data_args.block_size is None:
block_size = tokenizer.model_max_length
if block_size > 1024:
logger.warning(
"The chosen tokenizer supports a `model_max_length` that is longer than the default `block_size` value"
" of 1024. If you would like to use a longer `block_size` up to `tokenizer.model_max_length` you can"
" override this default with `--block_size xxx`."
)
block_size = 1024
else:
if data_args.block_size > tokenizer.model_max_length:
logger.warning(
f"The block_size passed ({data_args.block_size}) is larger than the maximum length for the model"
f"({tokenizer.model_max_length}). Using block_size={tokenizer.model_max_length}."
)
block_size = min(data_args.block_size, tokenizer.model_max_length)
# Main data processing function that will concatenate all texts from our dataset and generate chunks of block_size.
def group_texts(examples):
# Concatenate all texts.
#print(examples.keys())
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
total_length = len(concatenated_examples[list(examples.keys())[0]])
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
# customize this part to your needs.
if total_length >= block_size:
total_length = (total_length // block_size) * block_size
# Split by chunks of max_len.
result = {
k: [t[i : i + block_size] for i in range(0, total_length, block_size)]
for k, t in concatenated_examples.items()
}
result["labels"] = result["input_ids"].copy()
return result
with training_args.main_process_first(desc="dataset map tokenization and grouping"):
filename="charshu"
cache_path = os.path.join(data_args.data_cache_dir, filename+f"_{block_size}")
os.makedirs(cache_path, exist_ok=True)
try:
processed_dataset = datasets.load_from_disk(cache_path, keep_in_memory=False)
logger.info(f'training datasets-{filename} has been loaded from disk')
print(processed_dataset)
except Exception:
raw_dataset = load_dataset(data_args.dataset_dir)
# only use 'text' columns
# remove 'lm_score' columns(float), which causes 'float object is not iterable' error in 'group_texts'
for split_name in raw_dataset.keys():
raw_dataset[split_name] = raw_dataset[split_name].select_columns(['text'])
print(raw_dataset)
cache_dir = os.path.join(data_args.data_cache_dir, filename+f"_text_{block_size}")
os.makedirs(cache_dir, exist_ok=True)
for split_name in raw_dataset.keys():
split_cache_dir = os.path.join(cache_dir, split_name)
os.makedirs(split_cache_dir, exist_ok=True)
tokenized_dataset = raw_dataset.map(
tokenize_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns="text",
load_from_cache_file=True,
keep_in_memory=False,
cache_file_names = {split: os.path.join(os.path.join(cache_dir, split), 'tokenized.arrow') for split in raw_dataset},
desc="Running tokenizer on dataset",
)
print(tokenized_dataset)
grouped_datasets = tokenized_dataset.map(
group_texts,
batched=True,
num_proc=data_args.preprocessing_num_workers,
load_from_cache_file=True,
keep_in_memory=False,
cache_file_names = {split: os.path.join(os.path.join(cache_dir, split), 'grouped.arrow') for split in tokenized_dataset},
desc=f"Grouping texts in chunks of {block_size}",
)
processed_dataset = grouped_datasets
print(processed_dataset)
processed_dataset.save_to_disk(cache_path)
lm_datasets = processed_dataset # splits = 'train', 'validation', 'test'
if training_args.do_train:
train_dataset = lm_datasets['train']
if data_args.max_train_samples is not None:
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
logger.info(f"Num train_samples {len(train_dataset)}")
logger.info("Training example:")
logger.info(tokenizer.decode(train_dataset[0]['input_ids']))
if training_args.do_eval:
eval_dataset = lm_datasets["test"]
if data_args.max_eval_samples is not None:
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
eval_dataset = eval_dataset.select(range(max_eval_samples))
logger.info(f"Num eval_samples {len(eval_dataset)}")
logger.info("Evaluation example:")
logger.info(tokenizer.decode(eval_dataset[0]['input_ids']))
compute_dtype = (torch.float16 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32))
if training_args.load_in_kbits in [4, 8]:
load_in_4bit = training_args.load_in_kbits == 4
load_in_8bit = training_args.load_in_kbits == 8
if training_args.modules_to_save is not None:
load_in_8bit_skip_modules = training_args.modules_to_save.split(',')
else:
load_in_8bit_skip_modules = None
quantization_config = BitsAndBytesConfig(
load_in_4bit=training_args.load_in_kbits == 4,
load_in_8bit=training_args.load_in_kbits == 8,
llm_int8_threshold=6.0,
load_in_8bit_skip_modules=load_in_8bit_skip_modules,
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_use_double_quant=training_args.double_quant,
bnb_4bit_quant_type=training_args.quant_type # {'fp4', 'nf4'}
)
else:
load_in_4bit = False
load_in_8bit = False
quantization_config = None
if quantization_config is not None:
logger.info(f"quantization_config:{quantization_config.to_dict()}")
if model_args.model_name_or_path:
torch_dtype = (
model_args.torch_dtype
if model_args.torch_dtype in ["auto", None]
else getattr(torch, model_args.torch_dtype)
)
device_map = {"":int(os.environ.get("LOCAL_RANK") or 0)}
logger.info(f"use_flash_attn:{training_args.flash_attn}")
model = LlamaForCausalLM.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
torch_dtype=torch_dtype,
low_cpu_mem_usage=True,
device_map=device_map,
load_in_4bit=load_in_4bit,
load_in_8bit=load_in_8bit,
use_flash_attention_2=training_args.flash_attn,
quantization_config=quantization_config,
)
else:
# TODO: flash_attn settng https://github.com/huggingface/transformers/issues/26878
model = AutoModelForCausalLM.from_config(config)
n_params = sum({p.data_ptr(): p.numel() for p in model.parameters()}.values())
logger.info(f"Training new model from scratch - Total size={n_params/2**20:.2f}M params")
if training_args.load_in_kbits in [4, 8]:
model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=training_args.gradient_checkpointing)
model.config.use_cache = False
model_vocab_size = model.get_output_embeddings().weight.size(0)
tokenizer_vocab_size = len(tokenizer)
logger.info(f"Model vocab size: {model_vocab_size}")
logger.info(f"Tokenizer vocab size: {tokenizer_vocab_size}")
if tokenizer_vocab_size != jp_vocab_size:
raise ValueError(f"The vocab size of tokenizer is {tokenizer_vocab_size}, not {jp_vocab_size}. Please use Japanese-LLaMA-2 tokenizer.")
if model_vocab_size != tokenizer_vocab_size:
new_nvocab_size = len(tokenizer)
logger.info(f"Resize model vocab size to {new_nvocab_size}")
# NOTE: Use at least recent version of transformers and deepspeed as of 2023/10,
# otherwise resize may not take effect.
#
# https://github.com/huggingface/transformers/pull/26387
#
# for efficiency, make internal embedding size multiple of 64(51470 => 51520)
model.resize_token_embeddings(len(tokenizer), pad_to_multiple_of=64)
print(model)
if training_args.peft_path is not None:
logger.info("Peft from pre-trained model")
model = PeftModel.from_pretrained(model, training_args.peft_path, device_map=device_map)
else:
logger.info("Init new peft model")
target_modules = training_args.trainable.split(',')
modules_to_save = training_args.modules_to_save
if modules_to_save is not None:
modules_to_save = modules_to_save.split(',')
lora_rank = training_args.lora_rank
lora_dropout = training_args.lora_dropout
lora_alpha = training_args.lora_alpha
logger.info(f"target_modules: {target_modules}")
logger.info(f"lora_rank: {lora_rank}")
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
target_modules=target_modules,
inference_mode=False,
r=lora_rank, lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
modules_to_save=modules_to_save)
model = get_peft_model(model, peft_config)
if training_args.gradient_checkpointing and \
(not model.modules_to_save or 'embed_tokens' not in model.modules_to_save):
# enable requires_grad to avoid exception during backward pass when using gradient_checkpoint without tuning embed.
if hasattr(model.base_model, "enable_input_require_grads"):
model.base_model.enable_input_require_grads()
elif hasattr(model.base_model, "get_input_embeddings"):
def make_inputs_require_grad(_module, _input, _output):
_output.requires_grad_(True)
model.base_model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
for name, module in model.named_modules():
if isinstance(module, LoraLayer):
if training_args.bf16:
module = module.to(torch.bfloat16)
if training_args.fp16:
module = module.to(torch.float16)
if 'norm' in name:
module = module.to(torch.float16)
if 'lm_head' in name or 'embed_tokens' in name:
if hasattr(module, 'weight'):
if training_args.bf16 and module.weight.dtype == torch.float32:
module = module.to(torch.bfloat16)
if training_args.fp16 and module.weight.dtype == torch.float32:
module = module.to(torch.float16)
model.print_trainable_parameters()
logger.info(f"model.modules_to_save: {model.modules_to_save}")
# https://github.com/huggingface/peft/issues/286
# updating state_dict fails to save LoRA weight on 2+ save_pretrained().
# it looks we can simply uncomment it.
#old_state_dict = model.state_dict
#model.state_dict = (
# lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict())
#).__get__(model, type(model))
# Initialize our Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=tokenizer,
data_collator=fault_tolerance_data_collator,
compute_metrics=compute_metrics if training_args.do_eval and not is_torch_tpu_available() else None,
preprocess_logits_for_metrics=preprocess_logits_for_metrics
if training_args.do_eval and not is_torch_tpu_available()
else None,
)
trainer.add_callback(SavePeftModelCallback)
# Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate()
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
try:
perplexity = math.exp(metrics["eval_loss"])
except OverflowError:
perplexity = float("inf")
metrics["perplexity"] = perplexity
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
def test():
japanese_tokenizer_dir = "../data/merged_tokenizer_hf"
base_llama_model = "PY007/TinyLlama-1.1B-intermediate-step-480k-1T"
japanese_tokenizer = LlamaTokenizer.from_pretrained(japanese_tokenizer_dir)
print(japanese_tokenizer)
assert len(japanese_tokenizer) == jp_vocab_size
model = LlamaForCausalLM.from_pretrained(base_llama_model)
model_vocab_size = model.get_output_embeddings().weight.size(0)
print(model_vocab_size)
model.resize_token_embeddings(len(japanese_tokenizer))
#model.print_trainable_parameters()
#print(model.p_vocab_size)
# comma separated string
trainable = "q_proj,v_proj"
lora_rank = 8
lora_dropout = 0.1
lora_alpha = 32.0
modules_to_save = None # or str
target_modules = trainable.split(',')
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
target_modules=target_modules,
r=lora_rank,
inference_mode=False,
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
modules_to_save=modules_to_save)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
#old_state_dict = model.state_dict
## ?
#model.state_dict = (
# lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict())
#).__get__(model, type(model))
if __name__ == "__main__":
main()