-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcachex.cpp
1742 lines (1582 loc) · 52 KB
/
cachex.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*******************************************************************************
* CacheExplorer 0.14 dkk089@gmail.com 2019/03, based on :
* CacheExplorer 0.9 spath@cdfreaks.com 2006/xx
******************************************************************************/
#ifdef _WIN32
#include "cachex_win.h"
#elif defined(__linux__)
#include "cachex_linux.h"
#elif defined(__NetBSD__)
#include "cachex_netbsd.h"
#else
#include "result.h"
#include <array>
#include <vector>
#error "This platform is not supported. Please implement the functions below."
struct platform
{
using device_handle = int;
static device_handle open_volume(const char *) { return 0; }
static bool handle_is_valid(device_handle) { return false; }
static void close_handle(device_handle) {}
static std::uint32_t monotonic_clock()
{
static std::uint32_t val = 0;
return val++;
}
static void set_critical_priority() {}
static void set_normal_priority() {}
template <std::size_t CDBLength>
static void exec_command(device_handle, CommandResult &,
const std::array<std::uint8_t, CDBLength> &)
{
}
template <std::size_t CDBLength>
static void send_data(device_handle, CommandResult &,
const std::array<std::uint8_t, CDBLength> &,
const std::vector<std::uint8_t> &)
{
}
};
#endif
#include <cassert>
#include <cstdint>
#include <cstring>
#include <algorithm>
#include <array>
#include <iomanip>
#include <iostream>
#include <string>
#include <vector>
#define MAX_CACHE_LINES 10
#define NB_IGNORE_MEASURES 5
// offset of first block descriptor = size of mode parameter header
#define DESCRIPTOR_BLOCK_1 8
#define CACHING_MODE_PAGE 0x08
#define CD_DVD_CAPABILITIES_PAGE 0x2A
#define RCD_BIT 1
#define RCD_READ_CACHE_ENABLED 0
#define RCD_READ_CACHE_DISABLED 1
namespace
{
// global variables
int NbBurstReadSectors = 1;
double Delay = 0, Delay2 = 0, InitDelay = 0;
platform::device_handle hVolume;
double ThresholdRatioMethod2 = 0.9;
int CachedNonCachedSpeedFactor = 4;
int MaxCacheSectors = 1000;
struct debugstream
{
debugstream() {}
debugstream(const debugstream &) = delete;
template <typename T> debugstream &operator<<(T val)
{
if (Enabled)
{
std::cerr << val;
}
return *this;
}
bool Enabled = false;
operator bool() const { return Enabled; }
};
debugstream DEBUG;
debugstream SUPERDEBUG;
template <std::size_t N> using bytearray = std::array<std::uint8_t, N>;
namespace Command
{
bytearray<12> Read_A8h(long int TargetSector, int NbSectors, bool FUAbit)
{
bytearray<12> rv = {0xA8,
static_cast<std::uint8_t>(FUAbit << 3),
static_cast<std::uint8_t>(TargetSector >> 24),
static_cast<std::uint8_t>(TargetSector >> 16),
static_cast<std::uint8_t>(TargetSector >> 8),
static_cast<std::uint8_t>(TargetSector),
static_cast<std::uint8_t>(NbSectors >> 24),
static_cast<std::uint8_t>(NbSectors >> 16),
static_cast<std::uint8_t>(NbSectors >> 8),
static_cast<std::uint8_t>(NbSectors),
0,
0};
return rv;
}
bytearray<10> Read_28h(long int TargetSector, int NbSectors, bool FUAbit)
{
bytearray<10> rv = {0x28,
static_cast<std::uint8_t>(FUAbit << 3),
static_cast<std::uint8_t>(TargetSector >> 24),
static_cast<std::uint8_t>(TargetSector >> 16),
static_cast<std::uint8_t>(TargetSector >> 8),
static_cast<std::uint8_t>(TargetSector),
0,
static_cast<std::uint8_t>(NbSectors >> 8),
static_cast<std::uint8_t>(NbSectors),
0};
return rv;
}
bytearray<12> Read_28h_12(long int TargetSector, int NbSectors, bool FUAbit)
{
bytearray<12> rv = {0x28,
static_cast<std::uint8_t>(FUAbit << 3),
static_cast<std::uint8_t>(TargetSector >> 24),
static_cast<std::uint8_t>(TargetSector >> 16),
static_cast<std::uint8_t>(TargetSector >> 8),
static_cast<std::uint8_t>(TargetSector),
static_cast<std::uint8_t>(NbSectors >> 24),
static_cast<std::uint8_t>(NbSectors >> 16),
static_cast<std::uint8_t>(NbSectors >> 8),
static_cast<std::uint8_t>(NbSectors),
0,
0};
return rv;
}
bytearray<12> Read_BEh(long int TargetSector, int NbSectors)
{
bytearray<12> rv = {0xBE,
0x00, // 0x04 = audio data only, 0x00 = any type
static_cast<std::uint8_t>(TargetSector >> 24),
static_cast<std::uint8_t>(TargetSector >> 16),
static_cast<std::uint8_t>(TargetSector >> 8),
static_cast<std::uint8_t>(TargetSector),
static_cast<std::uint8_t>(NbSectors >> 16),
static_cast<std::uint8_t>(NbSectors >> 8),
static_cast<std::uint8_t>(NbSectors),
0x10, // just data
0, // no subcode
0};
return rv;
}
bytearray<10> Read_D4h(long int TargetSector, int NbSectors, bool FUAbit)
{
bytearray<10> rv = {0xD4,
static_cast<std::uint8_t>(FUAbit << 3),
static_cast<std::uint8_t>(TargetSector >> 24),
static_cast<std::uint8_t>(TargetSector >> 16),
static_cast<std::uint8_t>(TargetSector >> 8),
static_cast<std::uint8_t>(TargetSector),
static_cast<std::uint8_t>(NbSectors >> 16),
static_cast<std::uint8_t>(NbSectors >> 8),
static_cast<std::uint8_t>(NbSectors),
0};
return rv;
}
bytearray<10> Read_D5h(long int TargetSector, int NbSectors, bool FUAbit)
{
bytearray<10> rv = {0xD5,
static_cast<std::uint8_t>(FUAbit << 3),
static_cast<std::uint8_t>(TargetSector >> 24),
static_cast<std::uint8_t>(TargetSector >> 16),
static_cast<std::uint8_t>(TargetSector >> 8),
static_cast<std::uint8_t>(TargetSector),
static_cast<std::uint8_t>(NbSectors >> 16),
static_cast<std::uint8_t>(NbSectors >> 8),
static_cast<std::uint8_t>(NbSectors),
0};
return rv;
}
bytearray<12> Read_D8h(long int TargetSector, int NbSectors, bool FUAbit)
{
bytearray<12> rv = {0xD8,
static_cast<std::uint8_t>(FUAbit << 3),
static_cast<std::uint8_t>(TargetSector >> 24),
static_cast<std::uint8_t>(TargetSector >> 16),
static_cast<std::uint8_t>(TargetSector >> 8),
static_cast<std::uint8_t>(TargetSector),
static_cast<std::uint8_t>(NbSectors >> 24),
static_cast<std::uint8_t>(NbSectors >> 16),
static_cast<std::uint8_t>(NbSectors >> 8),
static_cast<std::uint8_t>(NbSectors),
0,
0};
return rv;
}
bytearray<12> PlextorFUAFlush(long int TargetSector)
{
// size stays zero, that's how this command works
// MMC spec specifies that "A Transfer Length of zero indicates that no
// logical blocks shall be transferred. This condition shall not be
// considered an error"
return Read_28h_12(TargetSector, 0, 1);
}
bytearray<6> RequestSense(std::uint8_t AllocationLength)
{
bytearray<6> rv = {3, // REQUEST SENSE
0,
0,
0,
AllocationLength, // allocation size
0};
return rv;
}
bytearray<10> ModeSense(unsigned char PageCode, unsigned char SubPageCode,
int size)
{
bytearray<10> rv = {0x5A, // MODE SENSE(10)
0,
PageCode,
SubPageCode,
0,
0,
0,
uint8_t((size >> 8) & 0xFF), // size
uint8_t((size)&0xFF),
0};
return rv;
}
bytearray<10> ModeSelect(std::uint16_t size)
{
bytearray<10> rv = {0x55, 0x10, 0, 0, 0, 0, 0, uint8_t(size >> 8),
uint8_t(size), 0};
return rv;
}
bytearray<10> Prefetch(long int TargetSector, unsigned int NbSectors)
{
bytearray<10> rv = {0x34, // PREFETCH
0,
uint8_t((TargetSector >> 24) & 0xFF), // target sector
uint8_t((TargetSector >> 16) & 0xFF),
uint8_t((TargetSector >> 8) & 0xFF),
uint8_t((TargetSector)&0xFF),
0,
uint8_t((NbSectors >> 8) & 0xFF), // size
uint8_t((NbSectors)&0xFF),
0};
return rv;
}
bytearray<6> Inquiry(std::uint8_t AllocationLength)
{
bytearray<6> rv = {0x12, 0, 0, 0, AllocationLength, 0};
return rv;
}
bytearray<12> SetCDSpeed(unsigned char ReadSpeedX, unsigned char WriteSpeedX)
{
unsigned int ReadSpeedkB = 0xFFFF;
if (ReadSpeedX != 0)
{
// don't ask me what this "+ 2" is doing here, MMC-4 doesn't mention
// anything of this sort.
ReadSpeedkB = (ReadSpeedX * 176) + 2; // 1x CD = 176kB/s
}
unsigned int WriteSpeedkB = (WriteSpeedX * 176);
bytearray<12> rv = {0xBB, // SET CD SPEED
0,
static_cast<std::uint8_t>(ReadSpeedkB >> 8),
static_cast<std::uint8_t>(ReadSpeedkB),
static_cast<std::uint8_t>(WriteSpeedkB >> 8),
static_cast<std::uint8_t>(WriteSpeedkB),
0,
0,
0,
0,
0,
0};
return rv;
}
} // namespace Command
template <std::size_t CDBLength>
void ExecCommand(CommandResult &rv,
const std::array<std::uint8_t, CDBLength> &cdb)
{
platform::exec_command(hVolume, rv, cdb);
}
template <std::size_t CDBLength>
void ExecCommand(CommandResult &rv,
const std::array<std::uint8_t, CDBLength> &cdb,
const std::vector<std::uint8_t> &data)
{
platform::send_data(hVolume, rv, cdb, data);
}
template <std::size_t CDBLength>
CommandResult ExecSectorCommand(unsigned int NbSectors,
const std::array<std::uint8_t, CDBLength> &cdb)
{
CommandResult rv(2448 * NbSectors);
ExecCommand(rv, cdb);
return rv;
}
template <std::size_t CDBLength>
CommandResult ExecBytesCommand(unsigned int NbBytes,
const std::array<std::uint8_t, CDBLength> &cdb)
{
CommandResult rv(NbBytes);
ExecCommand(rv, cdb);
return rv;
}
template <std::size_t CDBLength>
CommandResult ExecBytesCommand(unsigned int NbBytes,
const std::array<std::uint8_t, CDBLength> &cdb,
const std::vector<std::uint8_t> &data)
{
CommandResult rv(NbBytes);
ExecCommand(rv, cdb, data);
return rv;
}
CommandResult Read_A8h(long int TargetSector, int NbSectors, bool FUAbit)
{
return ExecSectorCommand(NbSectors,
Command::Read_A8h(TargetSector, NbSectors, FUAbit));
}
CommandResult Read_28h(long int TargetSector, int NbSectors, bool FUAbit)
{
return ExecSectorCommand(NbSectors,
Command::Read_28h(TargetSector, NbSectors, FUAbit));
}
CommandResult Read_28h_12(long int TargetSector, int NbSectors, bool FUAbit)
{
return ExecSectorCommand(
NbSectors, Command::Read_28h_12(TargetSector, NbSectors, FUAbit));
}
CommandResult Read_BEh(long int TargetSector, int NbSectors, bool)
{
return ExecSectorCommand(NbSectors,
Command::Read_BEh(TargetSector, NbSectors));
}
CommandResult Read_D4h(long int TargetSector, int NbSectors, bool FUAbit)
{
return ExecSectorCommand(NbSectors,
Command::Read_D4h(TargetSector, NbSectors, FUAbit));
}
CommandResult Read_D5h(long int TargetSector, int NbSectors, bool FUAbit)
{
return ExecSectorCommand(NbSectors,
Command::Read_D5h(TargetSector, NbSectors, FUAbit));
}
CommandResult Read_D8h(long int TargetSector, int NbSectors, bool FUAbit)
{
return ExecSectorCommand(NbSectors,
Command::Read_D8h(TargetSector, NbSectors, FUAbit));
}
struct sReadCommand
{
sReadCommand(const char *name, CommandResult (*func)(long int, int, bool),
bool fua)
: Name(name), pFunc(func), Supported(false), FUAbitSupported(fua)
{
}
sReadCommand &operator=(const sReadCommand &) = delete;
sReadCommand(const sReadCommand &) = delete;
const char *const Name;
CommandResult (*pFunc)(long int, int, bool);
bool Supported;
bool FUAbitSupported;
bool operator==(const char *name) const { return strcmp(Name, name) == 0; }
};
std::array<sReadCommand, 7> Commands = {{{"BEh", &Read_BEh, false},
{"A8h", &Read_A8h, true},
{"28h", &Read_28h, true},
{"28h_12", &Read_28h_12, true},
{"D4h", &Read_D4h, true},
{"D5h", &Read_D5h, true},
{"D8h", &Read_D8h, true}}};
sReadCommand &GetSupportedCommand()
{
auto it = std::find_if(std::begin(Commands), std::end(Commands),
[](auto &&cmd) { return cmd.Supported; });
// main() should quit if no valid read commands were found.
assert(it != std::end(Commands));
return *it;
}
sReadCommand *GetFUASupportedCommand()
{
auto it = std::find_if(std::begin(Commands), std::end(Commands),
[](auto &&cmd)
{ return cmd.Supported && cmd.FUAbitSupported; });
return it == std::end(Commands) ? nullptr : &(*it);
}
CommandResult PlextorFUAFlush(long int TargetSector)
{
return ExecSectorCommand(0, Command::PlextorFUAFlush(TargetSector));
}
CommandResult RequestSense()
{
const std::uint8_t AllocationLength = 18;
return ExecBytesCommand(AllocationLength,
Command::RequestSense(AllocationLength));
}
CommandResult ModeSense(unsigned char PageCode, unsigned char SubPageCode,
int size)
{
return ExecBytesCommand(size,
Command::ModeSense(PageCode, SubPageCode, size));
}
CommandResult ModeSelect(const std::vector<std::uint8_t> &data)
{
return ExecBytesCommand(data.size(), Command::ModeSelect(data.size()), data);
}
CommandResult Prefetch(long int TargetSector, unsigned int NbSectors)
{
return ExecBytesCommand(18, Command::Prefetch(TargetSector, NbSectors));
}
void PrintIDString(unsigned char *dataChars, int dataLength)
{
if (dataChars)
{
std::cerr << ' ';
while (0 < dataLength--)
{
auto cc = *dataChars++;
cc &= 0x7F;
if (!((0x20 <= cc) && (cc <= 0x7E)))
{
cc ^= 0x40;
}
std::cerr << static_cast<char>(cc);
}
}
}
bool PrintDriveInfo()
{
const std::uint8_t AllocationLength = 36;
auto result =
ExecBytesCommand(AllocationLength, Command::Inquiry(AllocationLength));
// print info
PrintIDString(&result.Data[8], 8); // vendor Id
PrintIDString(&result.Data[0x10], 0x10); // product Id
PrintIDString(&result.Data[0x20], 4); // product RevisionLevel
return true;
}
// bool ClearCache()
//
// fills the cache by reading backwards several areas at the beginning of the
// disc
//
bool ClearCache()
{
auto &&cmd = GetSupportedCommand();
for (int i = 0; i < MAX_CACHE_LINES; i++)
{
// old code added the original return value from these functions
// but then assigned true in the next line anyway, so...
cmd.pFunc((MAX_CACHE_LINES - i + 1) * 1000, 1, false);
}
return true;
}
bool SpinDrive(unsigned int Seconds)
{
auto &&cmd = GetSupportedCommand();
DEBUG << "\ninfo: spinning the drive... ";
auto TimeStart = platform::monotonic_clock();
int i = 0;
while (platform::monotonic_clock() - TimeStart <= (Seconds * 1000))
{
cmd.pFunc((10000 + (i++)) % 50000, 1, false);
}
return true;
}
CommandResult SetDriveSpeed(unsigned char ReadSpeedX, unsigned char WriteSpeedX)
{
return ExecBytesCommand(18, Command::SetCDSpeed(ReadSpeedX, WriteSpeedX));
}
void ShowCacheValues()
{
auto result = ModeSense(CD_DVD_CAPABILITIES_PAGE, 0, 32);
if (result)
{
std::cerr << "\n[+] Buffer size: "
<< ((result.Data[DESCRIPTOR_BLOCK_1 + 12] << 8) |
result.Data[DESCRIPTOR_BLOCK_1 + 13])
<< " kB";
}
else
{
SUPERDEBUG << "\ninfo: cannot read CD/DVD Capabilities page";
RequestSense();
}
result = ModeSense(CACHING_MODE_PAGE, 0, 20);
if (result)
{
std::cerr << ", read cache is "
<< ((result.Data[DESCRIPTOR_BLOCK_1 + 2] & RCD_BIT) ? "disabled"
: "enabled");
}
else
{
SUPERDEBUG << "\ninfo: cannot read Caching Mode page";
RequestSense();
}
}
bool SetCacheRCDBit(bool RCDBitValue)
{
bool retval = false;
auto result = ModeSense(CACHING_MODE_PAGE, 0, 20);
if (result)
{
result.Data[DESCRIPTOR_BLOCK_1 + 2] =
(result.Data[DESCRIPTOR_BLOCK_1 + 2] & 0xFE) | RCDBitValue;
result = ModeSelect(result.Data);
if (result)
{
result = ModeSense(CACHING_MODE_PAGE, 0, 20);
if (result &&
(result.Data[DESCRIPTOR_BLOCK_1 + 2] & RCD_BIT) == RCDBitValue)
{
retval = true;
}
}
if (!retval)
{
DEBUG << "\ninfo: cannot write Caching Mode page";
RequestSense();
}
}
else
{
DEBUG << "\ninfo: cannot read Caching Mode page";
RequestSense();
}
return (retval);
}
bool TestSupportedFlushCommands()
{
std::cerr << "\n[+] Supported cache flush commands:";
bool rv = false;
for (auto &&cmd : Commands)
{
if (cmd.FUAbitSupported)
{
if (cmd.pFunc(9900, 0, true))
{
rv = true;
std::cerr << ' ' << cmd.Name;
}
else
{
SUPERDEBUG << "\ncommand " << cmd.Name << " rejected";
RequestSense();
}
}
}
return rv;
}
//------------------------------------------------------------------------------
// void TestSupportedReadCommands(char DriveLetter)
//
// test and display which read commands are supported by the current drive
// and if any of these commands supports the FUA bit
//------------------------------------------------------------------------------
bool TestSupportedReadCommands()
{
std::cerr << "\n[+] Supported read commands:";
bool rv = false;
for (auto &&cmd : Commands)
{
if (cmd.pFunc(10000, 1, false))
{
rv = true;
std::cerr << ' ' << cmd.Name;
cmd.Supported = true;
if (cmd.FUAbitSupported)
{
if (cmd.pFunc(9900, 1, true))
{
std::cerr << "(FUA)";
}
else
{
SUPERDEBUG << "\ncommand " << cmd.Name << " with FUA bit rejected";
cmd.FUAbitSupported = false;
RequestSense();
}
}
}
else
{
SUPERDEBUG << "\ncommand " << cmd.Name << " rejected";
RequestSense();
}
}
return rv;
}
//
// TestPlextorFUACommand
//
// test if Plextor's flushing command is supported
bool TestPlextorFUACommand()
{
std::cerr << "\n[+] Plextor flush command: ";
auto result = PlextorFUAFlush(100000);
std::cerr << (result ? "accepted" : "rejected");
DEBUG << " (status = " << static_cast<int>(result.ScsiStatus) << ")";
return result;
}
//
// TestPlextorFUACommandWorks
//
// test if Plextor's flushing command actually works
int TestPlextorFUACommandWorks(sReadCommand &ReadCommand, long int TargetSector,
int NbTests)
{
int InvalidationSuccess = 0;
double InitDelay2 = 0;
DEBUG << "\ninfo: " << NbTests
<< " test(s), c/nc ratio: " << CachedNonCachedSpeedFactor
<< ", burst: " << NbBurstReadSectors << ", max: " << MaxCacheSectors;
for (int i = 0; i < NbTests; i++)
{
// first test : normal cache test
ClearCache();
auto result = ReadCommand.pFunc(TargetSector, NbBurstReadSectors,
false); // init read
InitDelay = result.Duration;
result = ReadCommand.pFunc(TargetSector + NbBurstReadSectors,
NbBurstReadSectors, false);
Delay = result.Duration;
// second test : add a Plextor FUA flush command in between
ClearCache();
result = ReadCommand.pFunc(TargetSector, NbBurstReadSectors,
false); // init read
InitDelay2 = result.Duration;
PlextorFUAFlush(TargetSector);
result = ReadCommand.pFunc(TargetSector + NbBurstReadSectors,
NbBurstReadSectors, false);
Delay2 = result.Duration;
DEBUG << "\n " << std::setprecision(2) << InitDelay << " ms / "
<< std::setprecision(2) << Delay << " ms -> " << std::setprecision(2)
<< InitDelay2 << " ms / " << std::setprecision(2) << Delay2 << " ms";
// compare times
if (Delay2 > (CachedNonCachedSpeedFactor * Delay))
{
InvalidationSuccess++;
}
}
DEBUG << "\nresult: ";
return (InvalidationSuccess);
}
// wrapper for TestPlextorFUACommandWorks
int TestPlextorFUACommandWorksWrapper(long int TargetSector, int NbTests)
{
auto &&cmd = GetSupportedCommand();
DEBUG << "\ninfo: using command " << cmd.Name;
return TestPlextorFUACommandWorks(cmd, TargetSector, NbTests);
}
//
// TimeMultipleReads
//
double TimeMultipleReads(sReadCommand &cmd, long int TargetSector, int NbReads,
bool FUAbit)
{
double AverageDelay = 0;
for (int i = 0; i < NbReads; i++)
{
auto result = cmd.pFunc(TargetSector, NbBurstReadSectors, FUAbit);
Delay = result.Duration;
AverageDelay = (((AverageDelay * i) + Delay) / (i + 1));
}
return AverageDelay;
}
//
// TestCacheSpeedImpact
//
// compare reading times with FUA bit (to disc) and without FUA (from cache)
void TestCacheSpeedImpact(long int TargetSector, int NbReads)
{
auto cmd = GetFUASupportedCommand();
if (!cmd)
{
std::cerr << "This function requires FUA support\n";
return;
}
cmd->pFunc(TargetSector, NbBurstReadSectors, false); // initial load
std::cerr << "\n[+] Read with " << cmd->Name << ", " << std::setprecision(2)
<< TimeMultipleReads(*cmd, TargetSector, NbReads, false) << " ms";
std::cerr << ", with FUA "
<< TimeMultipleReads(*cmd, TargetSector, NbReads, true) << " ms";
}
//
// TestRCDBitWorks
//
// test if cache can be disabled via RCD bit
int TestRCDBitWorks(sReadCommand &ReadCommand, long int TargetSector,
int NbTests)
{
int InvalidationSuccess = 0;
DEBUG << "\ninfo: " << NbTests
<< " test(s), c/nc ratio: " << CachedNonCachedSpeedFactor
<< ", burst: " << NbBurstReadSectors << ", max: " << MaxCacheSectors;
for (int i = 0; i < NbTests; i++)
{
// enable caching
if (!SetCacheRCDBit(RCD_READ_CACHE_ENABLED))
{
i = NbTests;
break;
}
// first test : normal cache test
ClearCache();
auto result = ReadCommand.pFunc(TargetSector, NbBurstReadSectors,
false); // init read
InitDelay = result.Duration;
result = ReadCommand.pFunc(TargetSector + NbBurstReadSectors,
NbBurstReadSectors, false);
Delay = result.Duration;
DEBUG << "\n1) " << TargetSector << " : " << std::setprecision(2)
<< InitDelay << " ms / " << (TargetSector + NbBurstReadSectors)
<< " : " << std::setprecision(2) << Delay << " ms";
// disable caching
if (!SetCacheRCDBit(RCD_READ_CACHE_DISABLED))
{
i = NbTests;
break;
}
// second test : with cache disabled
ClearCache();
result = ReadCommand.pFunc(TargetSector, NbBurstReadSectors,
false); // init read
InitDelay = result.Duration;
ReadCommand.pFunc(TargetSector + NbBurstReadSectors, NbBurstReadSectors,
false);
Delay2 = result.Duration;
DEBUG << "\n2) " << TargetSector << " : " << std::setprecision(2)
<< InitDelay << " ms / " << (TargetSector + NbBurstReadSectors)
<< " : " << std::setprecision(2) << Delay2 << " ms";
// compare times
if (Delay2 > (CachedNonCachedSpeedFactor * Delay))
{
InvalidationSuccess++;
}
}
DEBUG << "\nresult: " << InvalidationSuccess << '/' << NbTests << '\n';
return (InvalidationSuccess);
}
// wrapper for TestRCDBit
int TestRCDBitWorksWrapper(long int TargetSector, int NbTests)
{
auto &&cmd = GetSupportedCommand();
DEBUG << "\ninfo: using command " << cmd.Name;
return TestRCDBitWorks(cmd, TargetSector, NbTests);
}
//------------------------------------------------------------------------------
// TestCacheLineSize_Straight (METHOD 1 : STRAIGHT)
//
// The initial read should fill in the cache. Thus, following ones should be
// read much faster until the end of the cache. Therefore, a sudden increase of
// durations of the read accesses should indicate the size of the cache line. We
// have to be careful though that the cache cannot be refilled while we try to
// find the limits of the cache, otherwise we will get a multiple of the cache
// line size and not the cache line size itself.
//
//------------------------------------------------------------------------------
int TestCacheLineSize_Straight(sReadCommand &ReadCommand, long int TargetSector,
int NbMeasures)
{
int TargetSectorOffset, CacheLineSize;
int MaxCacheLineSize = 0;
double PreviousDelay, InitialDelay;
DEBUG << "\ninfo: " << NbMeasures
<< " test(s), c/nc ratio: " << CachedNonCachedSpeedFactor
<< ", burst: " << NbBurstReadSectors << ", max: " << MaxCacheSectors;
for (int i = 0; i < NbMeasures; i++)
{
ClearCache();
PreviousDelay = 50;
// initial read. After this the drive's cache should be filled
// with a number of sectors following this one.
auto result = ReadCommand.pFunc(TargetSector, NbBurstReadSectors, false);
InitialDelay = result.Duration;
SUPERDEBUG << "\n init " << TargetSector << ": " << InitialDelay;
// read 1 sector at a time and time the reads until one takes more
// than [CachedNonCachedSpeedFactor] times the delay taken by the
// previous read
for (TargetSectorOffset = 0; TargetSectorOffset < MaxCacheSectors;
TargetSectorOffset += NbBurstReadSectors)
{
auto result = ReadCommand.pFunc(TargetSector + TargetSectorOffset,
NbBurstReadSectors, false);
Delay = result.Duration;
SUPERDEBUG << "\n init " << (TargetSector + TargetSectorOffset) << ": "
<< Delay;
if (Delay >= (CachedNonCachedSpeedFactor * PreviousDelay))
{
break;
}
else
{
PreviousDelay = Delay;
}
}
if (TargetSectorOffset < MaxCacheSectors)
{
CacheLineSize = TargetSectorOffset;
std::cerr << "\n " << ((CacheLineSize * 2352) / 1024) << " kB / "
<< CacheLineSize << " sectors";
DEBUG << " (" << std::setprecision(2) << InitialDelay << " .. "
<< std::setprecision(2) << PreviousDelay << " -> "
<< std::setprecision(2) << Delay << ")";
if ((i > NB_IGNORE_MEASURES) && (CacheLineSize > MaxCacheLineSize))
{
MaxCacheLineSize = CacheLineSize;
}
}
else
{
std::cerr << "\n test aborted.";
}
}
return MaxCacheLineSize;
}
//------------------------------------------------------------------------------
// TestCacheLineSize_Wrap (METHOD 2 : WRAPAROUND)
//
// The initial read should fill in the cache. Thus, following ones should be
// read much faster until the end of the cache. However, there's the risk that
// at each read new following sectors are cached in, thus showing an infinitely
// large cache with method 1.
// In this case, we detect the cache size by reading again the initial sector :
// when new sectors are read and cached in, the initial sector must be
// cached-out, thus reading it will be longer. Should work fine on Plextor
// drives.
//
// This method allows to avoid the "infinite cache" problem due to background
// reloading even in case of cache hits. However, cache reloading could be
// triggered when a given threshold is reached. So we might be measuring the
// threshold value and not really the cache size.
//
//------------------------------------------------------------------------------
int TestCacheLineSize_Wrap(sReadCommand &ReadCommand, long int TargetSector,
int NbMeasures)
{
int TargetSectorOffset, CacheLineSize;
int MaxCacheLineSize = 0;
double InitialDelay, PreviousInitDelay;
DEBUG << "\ninfo: " << NbMeasures
<< " test(s), c/nc ratio: " << CachedNonCachedSpeedFactor
<< ", burst: " << NbBurstReadSectors << ", max: " << MaxCacheSectors;
for (int i = 0; i < NbMeasures; i++)
{
ClearCache();
// initial read. After this the drive's cache should be filled
// with a number of sectors following this one.
auto result = ReadCommand.pFunc(TargetSector, NbBurstReadSectors, false);
InitialDelay = result.Duration;
SUPERDEBUG << "\n init " << TargetSector << ": " << InitialDelay;
result = ReadCommand.pFunc(TargetSector, NbBurstReadSectors, false);
PreviousInitDelay = result.Duration;
SUPERDEBUG << "\n " << TargetSector << ": " << PreviousInitDelay;
// read 1 sector forward and the initial sector. If the original sector
// takes more than [CachedNonCachedSpeedFactor] times the delay taken by
// the previous read of, the initial sector, then we reached the limits
// of the cache
for (TargetSectorOffset = 1; TargetSectorOffset < MaxCacheSectors;
TargetSectorOffset += NbBurstReadSectors)
{
result = ReadCommand.pFunc(TargetSector + TargetSectorOffset,
NbBurstReadSectors, false);
Delay = result.Duration;
SUPERDEBUG << "\n " << (TargetSector + TargetSectorOffset) << ": "
<< Delay;
result = ReadCommand.pFunc(TargetSector, NbBurstReadSectors, false);
Delay2 = result.Duration;
SUPERDEBUG << "\n " << TargetSector << ": " << Delay2;
if (Delay2 >= (CachedNonCachedSpeedFactor * PreviousInitDelay))
{
break;
}
PreviousInitDelay = Delay2;
}
// did we find a timing drop within the expected limits ?
if (TargetSectorOffset < MaxCacheSectors)
{
// sometimes the first sector can be read so much faster than the
// next one that is incredibly fast, avoid this by increasing the
// ratio
if (TargetSectorOffset <= 1)
{
CachedNonCachedSpeedFactor++;
DEBUG << "\ninfo: increasing c/nc ratio to "
<< CachedNonCachedSpeedFactor;
i--;
}
else
{
CacheLineSize = TargetSectorOffset;
std::cerr << "\n " << ((CacheLineSize * 2352) / 1024) << " kB / "
<< CacheLineSize << " sectors";
DEBUG << " (" << std::setprecision(2) << InitialDelay << " .. "
<< std::setprecision(2) << PreviousInitDelay << " -> "
<< std::setprecision(2) << Delay << ")";
if ((i > NB_IGNORE_MEASURES) && (CacheLineSize > MaxCacheLineSize))
{
MaxCacheLineSize = CacheLineSize;
}