usage: run_exp.py [-h] [-c CFG_FILE] [--weight WEIGHT] [--test_only] [--lr LR] [--bs BS] [--resume RESUME]
[-m MAX_EPOCH] [--set ...]
deep learning on personality
optional arguments:
-h, --help show this help message and exit
-c , --cfg_file experiment config file
--resume saved model path to last training epoch
--test_only only test model on specified weights
--weight initialize with pretrained model weights
--lr learning rate
--bs training batch size
-m, --max_epoch set max training epochs
--set ... set config keys
If we want to start an experiment, training can be triggered by corresponding config file
# <DeepPersonality as the top dir>
script/run_exp.py \
--cfg_file config/unified_frame_images/03_bimodal_resnet18.yaml
If we want to resume training from a certain training checkpoint(saved model weights), parameter resume
can be specified
along with the saved weights. And before re-training, the training epochs and learning rate can be reset again if needed.
# <DeepPersonality as the top dir>
script/run_exp.py \
-c config/unified_frame_images/03_bimodal_resnet18.yaml \
--resume results/unified_frame_images/03_bimodal_resnet/12-19_18-15/checkpoint_199.pkl \
--max_epoch 210 \
--lr 0.001
If we only want to test a trained model, parameter test_only
can be used, and along with set
parameters to specify the model
weights used, shown as below:
script/run_exp.py \
-c config/unified_frame_images/09_hrnet.yaml \
--test_only \
--set TEST.WEIGHT results/unified_frame_images/09_hrnet/12-20_22-12/checkpoint_186.pkl