-
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_id41k.py
358 lines (283 loc) · 14 KB
/
train_id41k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import sys
import tensorflow as tf
import argparse
import numpy as np
import shutil
import os
from dataset import CTW1500Loader, ctw_train_loader
from metrics import runningScore
import models
from util import Logger
import time
import util
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def ohem_single(score, gt_text, training_mask):
pos_num = (int)(np.sum(gt_text > 0.5)) - (int)(np.sum((gt_text > 0.5) & (training_mask <= 0.5)))
if pos_num == 0:
# selected_mask = gt_text.copy() * 0 # may be not good
selected_mask = training_mask
selected_mask = selected_mask.reshape(1, selected_mask.shape[0], selected_mask.shape[1]).astype('float32')
return selected_mask
neg_num = (int)(np.sum(gt_text <= 0.5))
neg_num = (int)(min(pos_num * 3, neg_num))
if neg_num == 0:
selected_mask = training_mask
selected_mask = selected_mask.reshape(1, selected_mask.shape[0], selected_mask.shape[1]).astype('float32')
return selected_mask
#print()
neg_score = score[gt_text <= 0.5]
neg_score_sorted = np.sort(-neg_score)
threshold = -neg_score_sorted[neg_num - 1]
selected_mask = ((score >= threshold) | (gt_text > 0.5)) & (training_mask > 0.5)
selected_mask = selected_mask.reshape(1, selected_mask.shape[0], selected_mask.shape[1]).astype('float32')
return selected_mask
def ohem_batch(scores, gt_texts, training_masks):
scores = scores.numpy()
gt_texts = gt_texts.numpy()
training_masks = training_masks.numpy()
selected_masks = []
for i in range(scores.shape[0]):
selected_masks.append(ohem_single(scores[i, :, :], gt_texts[i, :, :], training_masks[i, :, :]))
selected_masks = np.concatenate(selected_masks, 0)
#selected_masks = torch.from_numpy(selected_masks).float()
selected_masks = tf.convert_to_tensor(selected_masks,dtype=tf.float32)
return selected_masks
def dice_loss(input, target, mask):
#input = torch.sigmoid(input)
input = tf.sigmoid(input)
#input = input.contiguous().view(input.size()[0], -1)
#target = target.contiguous().view(target.size()[0], -1)
#mask = mask.contiguous().view(mask.size()[0], -1)
input = tf.reshape(input, (input.shape[0], -1))
target = tf.reshape(target, (target.shape[0], -1))
mask = tf.reshape(mask, (mask.shape[0], -1))
input = input * mask
target = target * mask
#a = torch.sum(input * target, 1)
#b = torch.sum(input * input, 1) + 0.001
#c = torch.sum(target * target, 1) + 0.001
a = tf.reduce_sum(input * target, 1)
b = tf.reduce_sum(input * input, 1) + 0.001
c = tf.reduce_sum(target * target, 1) + 0.001
d = (2 * a) / (b + c)
#dice_loss = torch.mean(d)
dice_loss = tf.reduce_mean(d)
return 1 - dice_loss
def cal_text_score(texts, gt_texts, training_masks, running_metric_text):
training_masks = training_masks.numpy()
pred_text = tf.sigmoid(texts).numpy() * training_masks
pred_text[pred_text <= 0.5] = 0
pred_text[pred_text > 0.5] = 1
pred_text = pred_text.astype(np.int32)
gt_text = gt_texts.numpy() * training_masks
gt_text = gt_text.astype(np.int32)
running_metric_text.update(gt_text, pred_text)
score_text, _ = running_metric_text.get_scores()
return score_text
def cal_kernel_score(kernels, gt_kernels, gt_texts, training_masks, running_metric_kernel):
mask = (gt_texts * training_masks).numpy()
kernel = kernels[:, -1, :, :]
gt_kernel = gt_kernels[:, -1, :, :]
#pred_kernel = torch.sigmoid(kernel).data.cpu().numpy()
pred_kernel = tf.sigmoid(kernel).numpy()
pred_kernel[pred_kernel <= 0.5] = 0
pred_kernel[pred_kernel > 0.5] = 1
pred_kernel = (pred_kernel * mask).astype(np.int32)
gt_kernel = gt_kernel.numpy()
gt_kernel = (gt_kernel * mask).astype(np.int32)
running_metric_kernel.update(gt_kernel, pred_kernel)
score_kernel, _ = running_metric_kernel.get_scores()
return score_kernel
def train(train_loader, model, criterion, optimizer, epoch):
#model.train()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
running_metric_text = runningScore(2)
running_metric_kernel = runningScore(2)
end = time.time()
for batch_idx, (imgs, gt_texts, gt_kernels, training_masks, data_length) in enumerate(train_loader):
with tf.GradientTape() as tape:
data_time.update(time.time() - end)
outputs = model(imgs)
outputs = tf.transpose(outputs,(0,3,1,2))
texts = outputs[:, 0, :, :]
kernels = outputs[:, 1:, :, :]
selected_masks = ohem_batch(texts, gt_texts, training_masks)
loss_text = criterion(texts, gt_texts, selected_masks)
loss_kernels = []
mask0 = tf.sigmoid(texts).numpy()
mask1 = training_masks.numpy()
selected_masks = ((mask0 > 0.5) & (mask1 > 0.5)).astype('float32')
#selected_masks = torch.from_numpy(selected_masks).float()
selected_masks = tf.convert_to_tensor(selected_masks,dtype=tf.float32)
#selected_masks = Variable(selected_masks.cuda())
for i in range(6):
kernel_i = kernels[:, i, :, :]
gt_kernel_i = gt_kernels[:, i, :, :]
loss_kernel_i = criterion(kernel_i, gt_kernel_i, selected_masks)
loss_kernels.append(loss_kernel_i)
loss_kernel = sum(loss_kernels) / len(loss_kernels)
loss = 0.7 * loss_text + 0.3 * loss_kernel
#反向计算各层loss
losses.update(loss.numpy(), imgs.shape[0])
#计算梯度 tape模式,保持跟踪
grads = tape.gradient(loss, model.trainable_weights)
#
optimizer.apply_gradients(zip(grads, model.trainable_weights))
score_text = cal_text_score(texts, gt_texts, training_masks, running_metric_text)
score_kernel = cal_kernel_score(kernels, gt_kernels, gt_texts, training_masks, running_metric_kernel)
batch_time.update(time.time() - end)
end = time.time()
size = data_length / args.batch_size
if batch_idx % 20 == 0:
output_log = '({batch}/{size}) Batch: {bt:.3f}s | TOTAL: {total:.0f}min \
| ETA: {eta:.0f}min | Loss: {loss:.4f} | Acc_t: {acc: .4f} | IOU_t: {iou_t: .4f}\
| IOU_k: {iou_k: .4f}'.format(
batch=batch_idx + 1,
#size=len(train_loader),
size=data_length/args.batch_size,
bt=batch_time.avg,
total=batch_time.avg * batch_idx / 60.0,
#eta=batch_time.avg * (len(train_loader) - batch_idx) / 60.0,
eta=batch_time.avg * (size - batch_idx) / 60.0,
loss=losses.avg,
acc=score_text['Mean Acc'],
iou_t=score_text['Mean IoU'],
iou_k=score_kernel['Mean IoU'])
print(output_log)
sys.stdout.flush()
return (losses.avg, score_text['Mean Acc'], score_kernel['Mean Acc'], score_text['Mean IoU'], score_kernel['Mean IoU'])
def get_new_optimizer(args, optimizer, epoch):
global state
if epoch in args.schedule:
args.lr = args.lr * 0.1
conf = optimizer.get_config()
conf['learning_rate'] = args.lr
optimizer = optimizer.from_config(conf)
return optimizer
def main(args):
if args.checkpoint == '':
args.checkpoint = "checkpoints/ctw1500_%s_bs_%d_ep_%d"%(args.arch, args.batch_size, args.n_epoch)
if args.pretrain:
if 'synth' in args.pretrain:
args.checkpoint += "_pretrain_synth"
else:
args.checkpoint += "_pretrain_ic17"
print('checkpoint path: %s'%args.checkpoint)
print('init lr: %.8f'%args.lr)
print('schedule: ', args.schedule)
sys.stdout.flush()
if not os.path.isdir(args.checkpoint):
os.makedirs(args.checkpoint)
kernel_num = 7
min_scale = 0.4
start_epoch = 0
data_loader = CTW1500Loader(is_transform=True, img_size=args.img_size, kernel_num=kernel_num, min_scale=min_scale)
#train_loader = ctw_train_loader(data_loader, batch_size=args.batch_size)
if args.arch == "resnet50":
model = models.resnet50(pretrained=True, num_classes=kernel_num)
elif args.arch == "resnet101":
model = models.resnet101(pretrained=True, num_classes=kernel_num)
elif args.arch == "resnet152":
model = models.resnet152(pretrained=True, num_classes=kernel_num)
#resnet18 and 34 didn't inplement pretrained
elif args.arch == "resnet18":
model = models.resnet18(pretrained=False, num_classes=kernel_num)
elif args.arch == "resnet34":
model = models.resnet34(pretrained=False, num_classes=kernel_num)
elif args.arch == "mobilenetv2":
model = models.resnet152(pretrained=True, num_classes=kernel_num)
elif args.arch == "mobilenetv3large":
model = models.mobilenetv3_large(pretrained=False, num_classes=kernel_num)
elif args.arch == "mobilenetv3small":
model = models.mobilenetv3_small(pretrained=False, num_classes=kernel_num)
optimizer = tf.keras.optimizers.SGD(learning_rate=args.lr, momentum=0.99, decay=5e-4)
title = 'CTW1500'
if args.pretrain:
print('Using pretrained model.')
assert os.path.isfile(args.pretrain), 'Error: no checkpoint directory found!'
logger = Logger(os.path.join(args.checkpoint, 'log.txt'), title=title)
logger.set_names(['Learning Rate', 'Train Loss','Train Acc.', 'Train IOU.'])
elif args.resume:
print('Resuming from checkpoint.')
model.load_weights(args.resume)
logger = Logger(os.path.join(args.checkpoint, 'log.txt'), title=title, resume=True)
else:
print('Training from scratch.')
logger = Logger(os.path.join(args.checkpoint, 'log.txt'), title=title)
logger.set_names(['Learning Rate', 'Train Loss','Train Acc.', 'Train IOU.'])
for epoch in range(start_epoch, args.n_epoch):
optimizer = get_new_optimizer(args, optimizer, epoch)
print('\nEpoch: [%d | %d] LR: %f' % (epoch + 1, args.n_epoch, optimizer.get_config()['learning_rate']))
train_loader = ctw_train_loader(data_loader, batch_size=args.batch_size)
train_loss, train_te_acc, train_ke_acc, train_te_iou, train_ke_iou = train(train_loader, model, dice_loss,\
optimizer, epoch)
model.save_weights('%s%s' % (args.checkpoint, '/model_tf/weights'))
logger.append([optimizer.get_config()['learning_rate'], train_loss, train_te_acc, train_te_iou])
logger.close()
def set_gpu_memory_growth():
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
try:
# 设置 GPU 显存占用为按需分配
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
logical_gpus = tf.config.experimental.list_logical_devices('GPU')
print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
except RuntimeError as e:
# 异常处理
print(e)
else :
print('No GPU')
def limit_gpu_memory():
gpus = tf.config.experimental.list_physical_devices('GPU')
if gpus:
# Restrict TensorFlow to only allocate 1GB of memory on the first GPU
try:
tf.config.experimental.set_virtual_device_configuration(
gpus[0],
[tf.config.experimental.VirtualDeviceConfiguration(memory_limit=2524)])
logical_gpus = tf.config.experimental.list_logical_devices('GPU')
print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs")
except RuntimeError as e:
# Virtual devices must be set before GPUs have been initialized
print(e)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Hyperparams')
#parser.add_argument('--arch', nargs='?', type=str, default='mobilenetv3small')
parser.add_argument('--arch', nargs='?', type=str, default='resnet50')
#todo img_size as an effect para
parser.add_argument('--img_size', nargs='?', type=int, default=640,
help='Height of the input image')
parser.add_argument('--n_epoch', nargs='?', type=int, default=600,
help='# of the epochs')
parser.add_argument('--schedule', type=int, nargs='+', default=[200, 400],
help='Decrease learning rate at these epochs.')
parser.add_argument('--batch_size', nargs='?', type=int, default=1,
help='Batch Size')
parser.add_argument('--lr', nargs='?', type=float, default=1e-3,
help='Learning Rate')
parser.add_argument('--resume', nargs='?', type=str, default=None,
help='Path to previous saved model to restart from')
parser.add_argument('--pretrain', nargs='?', type=str, default=None,
help='Path to previous saved model to restart from')
parser.add_argument('--checkpoint', default='', type=str, metavar='PATH',
help='path to save checkpoint (default: checkpoint)')
args = parser.parse_args()
#set_gpu_memory_growth()
limit_gpu_memory()
main(args)