-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtabularize.py
executable file
·28 lines (28 loc) · 1.19 KB
/
tabularize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import argparse
import pandas as pd
pd.set_option('display.max_rows', None)
import numpy as np
parser = argparse.ArgumentParser()
parser.add_argument("results_csv_file", help="Path to results file")
parser.add_argument("-g", "--groupby", nargs='+', help="Group on this variable",
default=['model', 'annual_lr'])
parser.add_argument("--latex", default=False, action='store_true', help="Produce latex output")
parser.add_argument("--save", help="Path to save resulting table")
args = parser.parse_args()
print("Loading data:", args.results_csv_file)
df = pd.read_csv(args.results_csv_file)
print("N =", len(df))
print("Grouping by:", args.groupby)
groups = df.groupby(args.groupby)
results = pd.DataFrame(groups['accuracy'].mean())
results['SD'] = groups['accuracy'].std()
results['SE'] = groups['accuracy'].std() / groups['accuracy'].count()
results['acc-ci95'] = results['accuracy'].map('{:.4f}'.format) + "+-" + (1.96 * results['SE']).map('{:.2f}'.format)
print(results)
if args.save:
print("Saving aggregated results to:", args.save)
if args.latex:
with open(args.save, 'w') as fhandle:
print(results.to_latex(), fhandle)
else:
results.to_csv(args.save)