forked from xchoo/spaun2.0
-
Notifications
You must be signed in to change notification settings - Fork 0
/
disp_probe_data.py
577 lines (486 loc) · 22.3 KB
/
disp_probe_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
from __future__ import print_function
import os
import numpy as np
import numpy.ma as ma
import argparse
import matplotlib.pyplot as plt
# --------------------- DISP_PROBE_DATA CODE DEFAULTS ---------------------
supported_data_version = 6.1
default_filename = ''
max_lines = 50
# ----- Add current directory to system path ---
cur_dir = os.getcwd()
# --------------------- PROCESS SYSTEM ARGS ---------------------
parser = argparse.ArgumentParser(description='Script for displaying recorded' +
' probed data generated by the run_spaun.py' +
' script.')
parser.add_argument(
'data_filename', type=str,
help='Probe data filename.')
parser.add_argument(
'--showgrph', action='store_true',
help='Supply to show graphing of probe data.')
parser.add_argument(
'--showanim', action='store_true',
help='Supply to show animation of probe data.')
parser.add_argument(
'--showiofig', action='store_true',
help='Supply to show Spaun input/output figure.')
parser.add_argument(
'--data_dir', type=str, default=os.path.join(cur_dir, 'data'),
help='Directory to store output data.')
parser.add_argument(
'--legend_pos', type=str, default='best',
help='Legend position argument to use for matplotlib plots.')
parser.add_argument(
'--aspect', type=str, default='auto',
help='Aspect ratio to use for image plots and path plots.')
parser.add_argument(
'--trange', type=float, nargs=2, default=None,
help=('Minimum and maximum time values (in seconds) to display on the ' +
'graphs. Provided as two values e.g. --trange MIN MAX.'))
args = parser.parse_args()
data_filename = os.path.join(args.data_dir, args.data_filename)
data_filename = data_filename.replace('"', '')
show_grphs = args.showgrph
show_io = args.showiofig
show_anim = args.showanim
if not (show_grphs or show_io or show_anim):
show_grphs = True
# --------------------- LOAD SIM DATA ---------------------
gen_trange = False
if data_filename.endswith('.npz'):
config_filename = data_filename[:-4] + '_cfg.npz'
probe_data = np.load(data_filename, encoding='latin1')
elif data_filename.endswith('.h5'):
# H5 file format (nengo_mpi)
config_dir, filename = os.path.split(data_filename[:-3])
nameparts = filename.split('+')
config_filename = os.path.join(config_dir,
'+'.join(nameparts[:2]) + '_cfg.npz')
import h5py
probe_data = h5py.File(data_filename)
gen_trange = True
else:
raise RuntimeError('Filename: %s - File format not supported.' %
data_filename)
# --------------------- LOAD MODEL & PROBE CONFIG DATA ---------------------
config_data = np.load(config_filename, encoding='latin1')
data_version = 0 if 'version' not in config_data.keys() else \
config_data['version'].item()
if int(data_version) != int(supported_data_version):
print('Unsupported data version number. Expected %i, got %i.'
% (supported_data_version, data_version))
vocab_dict = config_data['vocab_dict'].item()
ncount_dict = config_data['ncount_dict'].item()
image_shapes = config_data['image_dict'].item()
path_limits = config_data['path_dict'].item()
probe_labels = config_data['label_dict'].item()
image_dict = dict()
motor_dict = dict()
sim_dt = config_data['dt']
# --------------------- GENERATE T RANGE ---------------------
if not gen_trange:
trange = probe_data['trange']
else:
data_len = probe_data[probe_data.keys()[0]].shape[0]
trange = np.arange(0, data_len * sim_dt, sim_dt)
if args.trange is None:
trange_inds = np.arange(trange.shape[0])
else:
trange_min, trange_max = args.trange
trange_inds = np.where((trange >= trange_min) & (trange <= trange_max))
t_data = trange[trange_inds]
# --------------------- DISPLAY PROBE DATA ---------------------
print("\nDISPLAYING PROBE DATA.")
fig_list = []
# Function to handle closing of one figure window, and close all other figures
def handle_close(fig, fig_list):
fig_list.pop(fig_list.index(fig))
if len(fig_list) > 0:
plt.close(fig_list[0])
# Helper function to calculate differences in images (for show_io)
def rmse(x1, x2):
return np.sqrt(np.sum((x1 - x2) ** 2))
# Helper function to adjust path coordinates to help plotting
def adjust_path_coords(path_data, path_limits, new_limits):
path_l_limit, path_u_limit = path_limits
path_range = path_u_limit - path_l_limit
new_l_limit, new_u_limit = new_limits
new_range = new_u_limit - new_l_limit
return ((path_data - path_l_limit) * (new_range / path_range) +
new_l_limit)
# Helper function to plot legends
def plot_legend(str_list, loc='right', labelspacing=0, max_per_row=5.0,
fontsize='medium'):
lgd = plt.legend(str_list, loc=loc, labelspacing=labelspacing,
ncol=int(np.ceil(len(str_list) / max_per_row)))
lgd_text = lgd.get_texts()
plt.setp(lgd_text, fontsize=fontsize)
# Helper function to reshape image data
def process_im_data(im_data, shape):
is_fail = False
if len(shape) > 2:
# Process color images
if shape[-1] == 3:
return im_data.reshape(shape)
elif shape[0] == 3:
new_shape = (shape[1], shape[2], shape[0])
return im_data.reshape(shape).T.reshape(new_shape).swapaxes(0, 1)
else:
is_fail = True
elif len(shape) == 2:
# Process BW images
return im_data.reshape(shape)
else:
is_fail = True
if is_fail:
raise RuntimeError('PROCESS IM DATA: Unknown image shape: %s' %
str(shape))
# Helper function to get default cmap for image data:
def get_cmap(im_shape):
if len(im_shape) > 2:
return None
else:
return 'gray'
# --------------------- DISPLAY GRAPHED DATA ---------------------
# Get presentation interval (for image graphs)
present_interval = probe_data['present_interval']
aspect_equal_y_margin = present_interval * 0.25
if show_grphs:
graph_list = config_data['graph_list']
print("GRAPH LIST: ")
print(graph_list)
title_list = [[]]
grph_list = [[]]
for p in graph_list:
if p == '..':
grph_list.append([])
title_list.append([])
elif p[0] == '!':
pass
elif p[:-2].replace('.', '').isdigit():
grph_list[-1].append(p)
else:
title_list[-1].append(p.replace('**', ''))
for n, fig in enumerate(grph_list):
f = plt.figure()
f.canvas.mpl_connect('close_event',
lambda evt, fig=f, fig_list=fig_list:
handle_close(fig, fig_list))
fig_list.append(f)
if len(title_list[n]) > 0:
plt.suptitle(title_list[n][-1])
max_r = len(fig)
for r, probe_id_str in enumerate(fig):
# Get probe id and probe plot options
probe_opts = probe_id_str[-2:]
probe = probe_id_str[:-2]
# Matplotlib settings
plt.subplot(max_r, 1, r + 1)
colormap = plt.cm.gist_ncar
graymap = plt.cm.gray
# Figure out if probe plot needs a legend
disp_legend = probe_opts[-1] == '*'
# Get probe data (filtered by min and max tranges)
if probe_opts[0] != 'p':
p_data = probe_data[probe][trange_inds]
if probe_opts[0] == 'V':
# Vector with vocabulary plots
vocab = vocab_dict[probe]
num_classes = min(len(vocab.keys), max_lines)
# Note: Limit number of plots to max_lines to limit memory
# usage
plt.gca().set_color_cycle([colormap(i) for i in
np.linspace(0, 0.9, num_classes)])
for i in range(num_classes):
plt.plot(t_data,
np.dot(p_data, vocab.vectors.T)[:, i])
if len(vocab.keys) < 30 and disp_legend:
plot_legend(vocab.keys)
elif probe_opts[0] == 'v':
# vector without vocabulary plots
num_dims = p_data[-1].size
if num_dims < 30:
plt.gca().set_color_cycle([colormap(i) for i in
np.linspace(0, 0.9,
num_dims)])
for i in range(num_dims):
plt.plot(t_data, p_data[:, i])
if disp_legend:
plot_legend(map(str, range(num_dims)))
else:
# If number of dimensions > max_lines, limit to max_lines
# (To avoid excessive memory usage)
plt.plot(t_data, p_data[:, :max_lines])
elif probe_opts[0] == 's':
# Spike display options
height = 0.75 # Height of 1 spike
spike_value = 1.0 / sim_dt
# Find the neurons to display
# Choose random selection of top 35% of fastest firing neurons
spike_totals = np.sum(p_data, axis=0)
total_neuron_count = spike_totals.shape[0]
disp_neuron_count = min(ncount_dict[probe], total_neuron_count)
top_neuron_count = int(max(total_neuron_count * 0.35,
disp_neuron_count))
spike_ind_sorted = np.argsort(spike_totals)[-top_neuron_count:]
spike_ind_selected = np.random.permutation(spike_ind_sorted)
spike_ind_selected = spike_ind_selected[:disp_neuron_count]
spike_data = p_data[:, spike_ind_selected]
# Set the color cycle to grayscale
plt.gca().set_color_cycle(
[graymap(i) for i in
np.linspace(0, 0.8, disp_neuron_count)])
# Triple the trange (spike plotting oddities)
strange = ma.array(t_data).repeat(3)
# Plot the spike plot
for nn in range(disp_neuron_count):
sdata = ma.array((spike_data[:, nn]).repeat(3))
sdata[0::3] *= (1 + nn - height / 2.0) / spike_value
sdata[1::3] *= (1 + nn + height / 2.0) / spike_value
sdata[2::3] = ma.masked
plt.plot(strange, sdata)
# Display a legend if specified?
if disp_legend:
plot_legend(map(str, spike_ind_sorted + 1))
plt.ylim(0, disp_neuron_count + 1)
elif probe_opts[0] == 'i':
# Image plot option
if probe not in image_dict:
# Raw image (vector) data hasn't been processed. Do
# processing now.
# Calculate root square error to figure out when the image
# changes
im_rse = np.sqrt(np.sum(np.diff(p_data, axis=0) ** 2,
axis=1))
# Figure out where the changes take place
im_timeline = \
np.concatenate(([0], np.where(im_rse > 0.1)[0] + 1))
image_dict[probe] = im_timeline
else:
im_timeline = image_dict[probe]
# Get image dimensions
im_shape = image_shapes[probe]
im_height = im_width = present_interval
# Plot the images
for im_ind in im_timeline:
im_data = p_data[im_ind, :]
im_time = t_data[im_ind]
plt.imshow(process_im_data(im_data, im_shape),
cmap=get_cmap(im_shape),
interpolation='nearest', aspect=args.aspect,
extent=(im_time, im_time + im_width,
0, im_height))
plt.plot([im_time] * 2,
[-aspect_equal_y_margin,
im_height + aspect_equal_y_margin], 'w')
plt.yticks([])
plt.gca().set_facecolor('black')
plt.ylim(-aspect_equal_y_margin,
im_height + aspect_equal_y_margin)
elif probe_opts[0] == 'p':
probes = probe.split('.')
probe_path = probe = probes[0]
if len(probes) > 1:
probe_pen = probes[1]
# Figure out when the pen is up and when the pen is down
pen_d_threshold = 0.5
pen_u_threshold = 0.25
pen_raw_data = probe_data[probe_pen][trange_inds]
pen_data = np.zeros(shape=pen_raw_data.shape)
# Anything above pen_d_threshold is considered down
pen_data[pen_raw_data >= pen_d_threshold] = 1
# Anything between pen_d_threshold and p_u_threshold has
# to be calculated (by taking the state of pen_data for
# one timestep previous)
pen_u_d_ind = np.where((pen_raw_data < pen_d_threshold) &
(pen_raw_data > pen_u_threshold))[0]
for ind in pen_u_d_ind:
pen_data[ind] = pen_data[ind - 1]
pen_data = pen_data.flatten()
# Figure out where the crossing points are
pen_change_inds = np.where(np.diff(pen_data))[0] + 1
# Split the time data into different chunks corresponding
# to each pen state
t_change = np.split(t_data, pen_change_inds)
# Split the path data into different chunks corresponding
# to each pen state
path_change = np.split(probe_data[probe_path],
pen_change_inds)
else:
# If there is no pen down information, then just plot the
# path at the end of the graph
pen_change_inds = [0]
pen_data = [1]
t_change = [[0], [t_data[-1]]]
path_change = [[0], probe_data[probe_path][trange_inds]]
# Get path limits
path_x_limit, path_y_limit = path_limits[probe_path]
# Iterate through the different pen states and plot them
for j, ind in enumerate(pen_change_inds):
# Get the pen state
pen_state = pen_data[ind]
# Plot if pen is down
if pen_state:
tstart = t_change[j + 1][-1] - present_interval
path_x = \
adjust_path_coords(path_change[j + 1][:, 0],
path_x_limit,
[tstart,
tstart + present_interval])
path_y = \
adjust_path_coords(path_change[j + 1][:, 1],
path_y_limit,
[0, present_interval])
plt.plot(path_x, path_y, 'b')
plt.gca().set_aspect(args.aspect)
plt.ylim(-aspect_equal_y_margin,
present_interval + aspect_equal_y_margin)
plt.yticks([])
else:
raise RuntimeError('Probe option: "%s" not supported' %
probe_opts[0])
plt.xlim([t_data[0], t_data[-1]])
if probe_labels[probe] is None:
plt.ylabel('%i,%i' % (n + 1, r + 1))
else:
plt.ylabel(probe_labels[probe])
# Compress plots (no vertical spaces between subplots)
f.subplots_adjust(hspace=0.05, bottom=0.05, left=0.05, right=0.98,
top=0.95)
plt.setp([a.get_xticklabels() for a in f.axes[:-1]], visible=False)
if show_anim or show_io:
anim_config = config_data['anim_config']
print("ANIMATION CONFIG: ")
print(anim_config)
if show_io:
# TODO: UPDATE TO USE NEW CODE FROM ABOVE
vis_stim_config = anim_config[0]
vis_stim_probe_id_str = vis_stim_config['data_func_params']['data']
vis_stim_data = np.array(probe_data[vis_stim_probe_id_str])
vis_im_shape = vis_stim_config['plot_type_params']['shape']
arm_data_dict = anim_config[1]['data_func_params']
ee_probe_id_str = arm_data_dict['ee_path_data']
ee_data = np.array(probe_data[ee_probe_id_str])
pen_probe_id_str = arm_data_dict['pen_status_data']
pen_data = np.array(probe_data[pen_probe_id_str])
arm_data_scale = anim_config[1]['plot_type_params']['xlim'][1]
reset_imgs = vis_stim_config['data_func_params']['reset_imgs']
num_cols = 0
curr_col_ind = 0
plot_data = []
plot_type = []
pen_down = False
pen_down_ind = -1
img_ind_filter = []
path_len_filter = 200
prev_img = np.zeros(vis_stim_data.shape[1])
for i in range(vis_stim_data.shape[0]):
img = vis_stim_data[i, :]
img_shown = np.sum(img) > 0
if (not pen_down and pen_data[i] > 0.5 and not img_shown):
pen_down = True
pen_down_ind = i
elif (pen_down and (pen_data[i] < 0.25 or img_shown or
i == vis_stim_data.shape[0] - 1)):
pen_down = False
path_data = ee_data[pen_down_ind:i, :]
if path_data.shape[0] > path_len_filter:
if len(plot_data) <= 0:
plot_data.append([])
plot_type.append([])
plot_data[-1].append(path_data)
plot_type[-1].append("path")
if rmse(prev_img, img) > 0.1:
# Img data is a reset image, so reset things
reset_img_shown = False
for reset_img in reset_imgs:
reset_img_shown = (reset_img_shown or
rmse(img, reset_img) < 0.1)
if not np.allclose(img, 0):
if reset_img_shown:
if len(plot_data) > 0:
num_cols = max(num_cols, len(plot_data[-1]))
plot_data.append([])
plot_type.append([])
curr_col_ind = 0
if len(plot_data) <= 0:
plot_data.append([])
plot_type.append([])
if (curr_col_ind in img_ind_filter) or \
len(img_ind_filter) == 0:
plot_data[-1].append(np.array(img))
plot_type[-1].append("im")
curr_col_ind += 1
prev_img = img
# Get number of columns (gotta do this here to take into account last row)
# added to the plot_data array
num_cols = max(num_cols, len(plot_data[-1]))
plt.figure(figsize=(min(2 * num_cols, 18), min(2 * len(plot_data), 12)))
for i in range(len(plot_data)):
for j in range(len(plot_data[i])):
plt.subplot(len(plot_data), num_cols, i * num_cols + j + 1,
aspect=1)
if plot_type[i][j] == 'im':
im_data = process_im_data(plot_data[i][j], vis_im_shape)
plt.imshow(im_data, cmap=get_cmap(vis_im_shape),
interpolation='nearest', aspect='equal')
plt.xticks([])
plt.yticks([])
else:
plt.plot(plot_data[i][j][:, 0], plot_data[i][j][:, 1])
plt.xticks([])
plt.yticks([])
plt.xlim(-arm_data_scale, arm_data_scale)
plt.ylim(-arm_data_scale, arm_data_scale)
plt.tight_layout()
if show_anim:
from _spaun.animation import ArmAnim, DataFunctions, GeneratorFunctions
subplot_width = anim_config[-1]['subplot_width']
subplot_height = anim_config[-1]['subplot_height']
max_subplot_cols = anim_config[-1]['max_subplot_cols']
num_plots = len(anim_config) - 1
num_cols = num_plots if num_plots < max_subplot_cols else max_subplot_cols
num_rows = int(np.ceil(1.0 * num_plots / max_subplot_cols))
# Make the figure to pass to the animation object
# Note: not hooked into close handler of other figures so that you can
# independently close animation figure while keeping others open
# (and vice versa)
f = plt.figure(figsize=(num_cols * subplot_width,
num_rows * subplot_height))
# Make the animation object
anim_obj = ArmAnim(None, (num_rows, num_cols), f)
func_map = {}
# Loop through the animation configuration list and add each subplot
for i, config in enumerate(anim_config[:-1]):
# Subplot location
subplot_row = int(i / max_subplot_cols)
subplot_col = int(i % max_subplot_cols)
# Create the data object to use for the animation
data_func_obj = getattr(DataFunctions, config['data_func'])
data_func_params = {}
for param_name in config['data_func_params']:
if isinstance(config['data_func_params'][param_name], str):
data_func_params[param_name] = \
probe_data[config['data_func_params'][param_name]]
else:
data_func_params[param_name] = \
config['data_func_params'][param_name]
data_func = data_func_obj(**data_func_params)
# Add the data function to the function map
func_map[config['key']] = data_func
# Add animation subplot to anim_obj
plot_type_params = dict(config['plot_type_params'])
plot_type_params.setdefault('key', config['key'])
plot_type_params.setdefault('tl_loc', (subplot_row, subplot_col))
getattr(anim_obj, 'add_' + config['plot_type'])(**plot_type_params)
# Assign the proper data generator function to the animation object and
# start it
data_gen_func_params = anim_config[-1]['generator_func_params']
anim_obj.data_gen_func = \
lambda: GeneratorFunctions.keyed_data_funcs(trange, func_map,
**data_gen_func_params)
anim_obj.start(interval=10)
plt.show()
probe_data.close()