Skip to content

leestott/visual-exploration-vectors

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

A visual exploration of vectors

A vector embedding encodes an input as a list of floating point numbers.

"dog" → [0.017198, -0.007493, -0.057982, 0.054051, -0.028336, 0.019245,…]

Different models output different embeddings, with varying lengths.

Model Encodes Vector length
word2vec words 300
Sbert (Sentence-Transformers) text (up to ~400 words) 768
OpenAI ada-002 text (up to 8191 tokens) 1536
Azure Computer Vision image or text 1024

Vector embeddings are commonly used for similarity search, fraud detection, recommendation systems, and RAG (Retrieval-Augmented Generation).

This repository contains a visual exploration of vectors, using several embedding models.

Go through notebooks in this order:

  1. Prepare text vectors: OpenAI ada-002, Word2Vec Google News
  2. Vector models
  3. Vector distance metrics
  4. Multi-word vectors
  5. Vector quantization
  6. Prepare multimodal vectors
  7. Explore multimodal vectors

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%