-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdefine_and_get_fields_SRA.R
421 lines (338 loc) · 14.9 KB
/
define_and_get_fields_SRA.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
# Load libraries
library('RSQLite')
library('magrittr')
library('SRAdb')
library('stringr')
# Define functions
"%p%" <- function(x, y) paste0(x, y)
sqlfile <- file.path('.', 'SRAmetadb.sqlite')
# Download sql if necessary:
if(!file.exists('SRAmetadb.sqlite')) sqlfile <<- getSRAdbFile()
# Create connection
sra_con <- dbConnect(SQLite(),sqlfile)
# Query database
query <- "SELECT
run_accession,
sample_accession,
experiment_accession,
study_accession,
submission_accession,
sra_ID,
run_ID,
run_alias,
run_date,
updated_date,
spots,
bases,
run_center,
experiment_name,
run_attribute,
experiment_ID,
experiment_alias,
experiment_title,
study_name,
sample_name,
design_description,
library_name,
library_strategy,
library_source,
library_selection,
library_layout,
library_construction_protocol,
read_spec,
platform,
instrument_model,
platform_parameters,
experiment_url_link,
experiment_attribute,
sample_ID,
sample_alias,
taxon_id,
common_name,
description,
sample_url_link,
sample_attribute,
study_ID,
study_alias,
study_title,
study_type,
study_abstract,
center_project_name,
study_description,
study_url_link,
study_attribute,
related_studies,
primary_study,
submission_ID,
submission_comment,
submission_center,
submission_lab,
submission_date,
sradb_updated
FROM sra
WHERE platform = 'ILLUMINA' AND
library_strategy = 'RNA-Seq' AND
taxon_id = 9606;"
selected <- dbGetQuery(sra_con, query)
query <- paste0("SELECT * FROM fastq WHERE run_accession IN ('",
paste(selected$run_accession, collapse="', '"), "')")
fastq_namefiles <- dbGetQuery(sra_con, query)
# Disconnect from db
dbDisconnect(sra_con)
metadata <- merge(selected, fastq_namefiles, by = "run_accession")
metadata$date_download <- rep(Sys.time(),nrow(metadata)) %>% as.character()
# Rename column name for file data
names(metadata)[names(metadata) == 'sradb_updated.y'] <- 'sradb_updated_file'
get.fastq.urls <- function(df) {
url <- rep(NA, length(df$run_accession))
for(i in 1:length(df$run_accession)) {
run <- df$run_accession[i]
filename <- df$file_name[i]
if(nchar(run) < 10) {
url[i] <- file.path('ftp://ftp.sra.ebi.ac.uk/vol1/fastq',
substring(run, 1, 6), run, filename)
} else {
dir2 <- paste( c(rep(x='0', 12-nchar(run)), substring(run, 10,
nchar(run))), collapse = '' )
url[i] <- file.path('ftp://ftp.sra.ebi.ac.uk/vol1/fastq',
substring(run, 1, 6), dir2, run, filename)
}
}
return(url)
}
metadata$URL <- get.fastq.urls(metadata)
metadata$layout <- unlist(lapply(strsplit(metadata$library_layout, " - "), `[`, 1))
# Get all PAIRED-end and SINGLE runs with 2 associated files (forward and reverse)
## PAIRED _1
paired_and_forward <- grep("_1", metadata$URL)
## PAIRED _2
paired_and_reverse <- grep("_2", metadata$URL)
equal <- setequal(metadata$run_accession[paired_and_forward],
metadata$run_accession[paired_and_reverse])
cat("N°studies:(paired-end AND '_1')\t", length(paired_and_forward), "\n",
"N°studies:(paired-end AND '_2')\t", length(paired_and_reverse), "\n",
"Are run_accessions equal for paired AND '_1' and paired AND '_2'?:\n", equal)
diff1 <- setdiff(metadata$run_accession[paired_and_forward], metadata$run_accession[paired_and_reverse])
diff2 <- setdiff(metadata$run_accession[paired_and_reverse], metadata$run_accession[paired_and_forward])
if (!equal){
cat("Differences forward-reverse:\n")
print(diff1)
cat("Differences reverse-forward:\n")
print(diff2)
}
file_names_diff2 <- subset(metadata, run_accession == diff2)[,"file_name"]
if(!(grepl("_", file_names_diff2[1]) & grepl("_", file_names_diff2[2]))){
failed_url <- unlist(strsplit(subset(metadata, run_accession == diff2)[1,"URL"], "/"))
positions <- rownames(subset(metadata, run_accession == diff2))
pos_file <- grep('.fastq.gz', failed_url)
failed_url
f_file <- failed_url -> r_file
f_file[pos_file[1]] <- as.character(diff2) %p% "_2.fastq.gz"
r_file[pos_file[1]] <- as.character(diff2) %p% "_1.fastq.gz"
f_file <- paste(f_file, collapse = "/")
r_file <- paste(r_file, collapse = "/")
metadata[positions[1],c("URL")] <- f_file
metadata[positions[2],c("URL")] <- r_file
metadata[positions[2],c("md5")] <- '0'
}
## PAIRED _1
paired_and_forward <- grep("_1", metadata$URL)
## PAIRED _2
paired_and_reverse <- grep("_2", metadata$URL)
equal <- setequal(metadata$run_accession[paired_and_forward],
metadata$run_accession[paired_and_reverse])
cat("N°studies:(paired-end AND '_1')\t", length(paired_and_forward), "\n",
"N°studies:(paired-end AND '_2')\t", length(paired_and_reverse), "\n",
"Are run_accessions equal for paired AND '_1' and paired AND '_2'?:\n", equal)
diff1 <- setdiff(metadata$run_accession[paired_and_forward], metadata$run_accession[paired_and_reverse])
diff2 <- setdiff(metadata$run_accession[paired_and_reverse], metadata$run_accession[paired_and_forward])
if (!equal){
cat("Differences forward-reverse:\n")
print(diff1)
cat("Differences reverse-forward:\n")
print(diff2)
}
metadata_twofiles_single_F <- table(metadata[paired_and_forward,]$layout)
metadata_twofiles_single_R <- table(metadata[paired_and_reverse,]$layout)
metadata_twofiles_single_F[3] <- " <-- Runs with 2 files | F | _1"
metadata_twofiles_single_R[3] <- " <-- Runs with 2 files | R | _2"
print(metadata_twofiles_single_F)
print(metadata_twofiles_single_R)
# Make sure single runs have F and R associated files
metadata_twofiles_single_F_layout <- subset(metadata[paired_and_forward,], layout == "SINGLE")
nrow(metadata_twofiles_single_F_layout)
metadata_twofiles_single_R_layout <- subset(metadata[paired_and_reverse,], layout == "SINGLE")
nrow(metadata_twofiles_single_R_layout)
setdiff(metadata_twofiles_single_F_layout$run_accession,
metadata_twofiles_single_R_layout$run_accession)
# Normalize metadata table
ids_filename <- c("run_accession", "study_accession", "sample_accession",
"experiment_accession", "submission_accession", "file_name", "URL", "md5")
PF <- metadata[paired_and_forward, ids_filename]
PR <- metadata[paired_and_reverse, ids_filename]
PF <- cbind(PF, paired_and_forward)
PR <- cbind(PR, paired_and_reverse)
paired_experiments <- merge(PF, PR, by = head(ids_filename, -3))
colnames(paired_experiments) <- c("run_accession", "study_accession", "sample_accession", "experiment_accession",
"submission_accession", "file_name.f", "URL.f", "md5.f","paired_and_forward", "file_name.r",
"URL.r", "md5.r","paired_and_reverse")
# Assign urls to paired runs (reverse)
reverse_url <- rep("NA", nrow(metadata))
reverse_url[paired_experiments$paired_and_forward] <- paired_experiments$URL.r
metadata$URL_R <- reverse_url
# Assign md5 to paired runs (reverse)
reverse_md5 <- rep("NA", nrow(metadata))
reverse_md5[paired_experiments$paired_and_forward] <- paired_experiments$md5.r
metadata$md5_R <- reverse_md5
# Remove reverse paired-end runs from metadata table
metadata <- metadata[-paired_experiments$paired_and_reverse, ]
# Identify duplicated run_accessions
print(length(metadata$run_accession))
print(length(unique(metadata$run_accession)))
#metadata[duplicated(metadata$run_accession),]$run_accession
duplicated_accessions <- metadata[duplicated(metadata$run_accession),]
i <- metadata[,1] %in% duplicated_accessions$run_accession
duplicated_accessions <-metadata[i,]
print(duplicated_accessions[1:4,])
# Remove duplicated paired accessions associated with 3 files
# Keep those with two files
# Example:
# (ERR033743.fastq.gz, ERR033743_1.fastq.gz, and ERR033743_2.fastq.gz)
# Keep ERR033743_1.fastq.gz, and ERR033743_2.fastq.gz pair
paired_with_F <- intersect(grep("PAIRED", metadata$layout), grep("_1", metadata$URL))
paired_with_F_and_R <- intersect(paired_with_F, grep("_2", metadata$URL_R))
duplicated_paired_wo_R <- setdiff(grep("PAIRED", metadata$layout), paired_with_F_and_R)
print("Number of duplicated runs associated with 3 files")
print(nrow(metadata[duplicated_paired_wo_R,]))
metadata <- metadata[-duplicated_paired_wo_R,]
# Corroborations
print("Make sure metadata does not have duplicated runs")
print(nrow(metadata))
print(length(unique(metadata$run_accession)))
print("Make sure all paired experiments have 2 files")
paired_1 <- intersect(grep("PAIRED", metadata$layout), grep("_1", metadata$URL))
paired_2 <- intersect(grep("PAIRED", metadata$layout), grep("_2", metadata$URL_R))
print(setdiff(paired_1, paired_2))
print(setdiff(paired_2, paired_1))
print("Are there single runs with 2 associated files?")
single_1 <- intersect(grep("SINGLE", metadata$layout), grep("_1", metadata$URL))
single_2 <- intersect(grep("SINGLE", metadata$layout), grep("_2", metadata$URL_R))
length(intersect(single_1, single_2))
print("Are there single runs with files ending with _2 in URL?")
length(intersect(grep("SINGLE", metadata$layout), grep("_2", metadata$URL)))
print("Are there single runs with files ending with _1 in URL_R?")
length(intersect(grep("SINGLE", metadata$layout), grep("_1", metadata$URL_R)))
search.field <- function(column, field) {
str_split(column, "\\|\\|") %>%
lapply(str_trim) %>%
lapply(str_extract, regex(field %p% ":.*", ignore_case = TRUE)) %>%
lapply(na.omit) %>%
lapply(as.vector) %>% ifelse(. == 'character(0)', 'NA', .) %>%
lapply(`[[`, 1) %>%
unlist() %>%
str_replace_all(regex(field %p% ": ", ignore_case = TRUE), "") %>%
str_to_upper()
}
# Get cell type
metadata$cell_type <- search.field(metadata$sample_attribute, "cell type")
# Get tissue
metadata$tissue <- search.field(metadata$sample_attribute, "tissue")
# Get cell line
metadata$cell_line <- search.field(metadata$sample_attribute, "cell line")
# Get strain
metadata$strain <- search.field(metadata$sample_attribute, "Strain")
# Get age
metadata$age <- search.field(metadata$sample_attribute, "age")
# Get disease
metadata$disease <- search.field(metadata$sample_attribute, "disease")
# Get population
metadata$population <- str_replace_all(search.field(metadata$sample_attribute, "population"),
regex('hapmap ', ignore_case = TRUE), "")
# Get race
metadata$race <- search.field(metadata$sample_attribute, "race")
metadata$population <- ifelse((metadata$population == 'NA') & (metadata$race == 'NA'),'NA',
ifelse(metadata$population == 'NA', metadata$race, metadata$population))
metadata$race <- NULL
# Get sex of individuals
metadata$sex <- search.field(metadata$sample_attribute, "sex") %>%
str_replace(regex("^male$", ignore_case = TRUE), "M") %>%
str_replace(regex("^female$", ignore_case = TRUE), "F") %>%
str_replace("^U$", "NA") %>%
str_replace(regex("^missing$", ignore_case = TRUE), "NA") %>%
str_replace(regex("^asexual$", ignore_case = TRUE), "NA") %>%
str_replace(regex("^mixed$", ignore_case = TRUE), "B") %>%
str_replace(regex("^mixed sex$", ignore_case = TRUE), "B") %>%
str_replace(regex("^mixture$", ignore_case = TRUE), "B") %>%
str_replace('1 Male, 2 Female', "M, FF") %>%
str_replace('2 Male, 1 Female', "MM, F") %>%
str_replace('^3 Female$', "FFF")
# Get gender
metadata$gender <- search.field(metadata$sample_attribute, "gender") %>%
str_replace(regex("^male$", ignore_case = TRUE), "M") %>%
str_replace(regex("^female$", ignore_case = TRUE), "F") %>%
str_replace(regex("^male$", ignore_case = TRUE), "M") %>%
str_replace("^MAL$", "M") %>%
str_replace("^FEM$", "F") %>%
str_replace('XY', "M") %>%
str_replace('XX', "F") %>%
str_replace(regex("^mixture$", ignore_case = TRUE), "B") %>%
str_replace(regex("^mixed$", ignore_case = TRUE), "B") %>%
str_replace("^3 Female$", "FFF")
metadata$sex <- ifelse((metadata$sex == 'NA') & (metadata$gender == 'NA'),'NA',
ifelse(metadata$sex == 'NA', metadata$gender, metadata$sex))
metadata$gender <- NULL
# Cheking merged columns
# table(metadata$gender)[c(1,3,4)] + table(metadata$sex)[c(2,4,7)]
# Get source type of samples
metadata$source_name <- search.field(metadata$sample_attribute, "source_name")
# Removing new line characters
metadata$read_spec <- gsub("\n", "", metadata$read_spec)
# Create manifest file
labels <- c("study_accession", "sample_accession",
"experiment_accession", "run_accession")
sample_labels <- as.vector(apply(metadata[,labels], 1 ,
function(x){paste( x ,collapse = "_")}))
s_i <- grep("_", metadata$URL, invert = TRUE)
p_i <- grep("_", metadata$URL)
single <- cbind(metadata$URL[s_i], metadata$md5[s_i], sample_labels[s_i] %p% "-1-1")
rownames(single) <- s_i
paired <- cbind(metadata$URL[p_i], metadata$md5[p_i], metadata$URL_R[p_i], metadata$md5_R[p_i],
sample_labels[p_i] %p% "-1-1")
rownames(paired) <- p_i
order_list <- c(p_i,s_i)
rownames(metadata) <- 1:nrow(metadata)
paired_as_single <- subset(paired, paired[,3] == 'NA' | paired[,4] == 'NA')
print("Number of studies reported as paired but just one fastq file is given:")
print(nrow(paired_as_single))
print(paired_as_single[,c(1,5)])
order_list <- c(as.numeric(rownames(paired)),as.numeric(rownames(single)))
convert_mis_to_na <- . %>% str_replace_na() %>%
str_replace(regex("^not_documented$", ignore_case = TRUE), "NA") %>%
str_replace(regex("^not determined$", ignore_case = TRUE), "NA") %>%
str_replace(regex("^not applicable$", ignore_case = TRUE), "NA") %>%
str_replace(regex("^Unknown$", ignore_case = TRUE), "NA") %>%
str_replace(regex("^not collected$", ignore_case = TRUE), "NA") %>%
str_replace(regex("^none provided$", ignore_case = TRUE), "NA") %>%
str_replace(regex("^unspecified$", ignore_case = TRUE), "NA") %>%
str_replace(regex("^none$", ignore_case = TRUE), "NA") %>%
str_replace("^N/A$", "NA") %>%
str_replace("^<NA>$", "NA") %>%
str_replace("^--$", "NA") %>%
str_replace("$^", "NA") %>%
str_replace("$ ^", "NA") %>%
ifelse(. == 'NA', NA, .)
metadata <- lapply(metadata, convert_mis_to_na) %>%
lapply(str_trim) %>% as.data.frame()
# Write table with all Illumina data
write.table(metadata[match(order_list, rownames(metadata)),], "all_illumina_sra_for_human.txt",
sep = "\t", quote = FALSE, row.names = FALSE)
write.table(paired, "manifest_file_illumina_sra_human", sep = "\t", quote = FALSE,
col.names = FALSE, row.names = FALSE)
write.table(single, "manifest_file_illumina_sra_human", sep = "\t", quote = FALSE,
col.names = FALSE, row.names = FALSE, append = TRUE)
# Ensure reproducibility
options(width = 120)
devtools::session_info()
# MANIFEST FILE FORMAT
# <FASTQ URL>(tab)<optional MD5>(tab)<sample label>
# <FASTQ URL 1>(tab)<optional MD5 1>(tab)<FASTQ URL 2>(tab)<optional MD5 2>(tab)<sample label>