forked from VisionLearningGroup/visda21-dev
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
168 lines (139 loc) · 5.81 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import numpy as np
import torch
import torch.nn.functional as F
import logging
from sklearn.preprocessing import label_binarize
from sklearn.metrics import roc_auc_score
def test(step, dataset_test, name, n_share, G, Cs,
open=False, entropy=False, thr=None):
G.eval()
for c in Cs:
c.eval()
## Known Score Calculation.
correct = 0
correct_close = 0
size = 0
per_class_num = np.zeros((n_share + 1))
per_class_correct = np.zeros((n_share + 1)).astype(np.float32)
class_list = np.unique(dataset_test.dataset.labels)
open_class = 1000
for batch_idx, data in enumerate(dataset_test):
with torch.no_grad():
img_t, label_t = data[0].cuda(), data[1].cuda()
feat = G(img_t)
out_t = Cs[0](feat)
pred = out_t.data.max(1)[1]
correct_close += pred.eq(label_t.data).cpu().sum()
out_t = F.softmax(out_t)
if entropy:
pred_unk = -torch.sum(out_t * torch.log(out_t), 1)
else:
out_open = Cs[1](feat)
out_open = F.softmax(out_open.view(out_t.size(0), 2, -1),1)
tmp_range = torch.range(0, out_t.size(0)-1).long().cuda()
pred_unk = out_open[tmp_range, 0, pred]
correct += pred.eq(label_t.data).cpu().sum()
pred = pred.cpu().numpy()
k = label_t.data.size()[0]
for i, t in enumerate(class_list):
t_ind = np.where(label_t.data.cpu().numpy() == t)
correct_ind = np.where(pred[t_ind[0]] == t)
per_class_correct[i] += float(len(correct_ind[0]))
per_class_num[i] += float(len(t_ind[0]))
size += k
if batch_idx == 0:
prediction = pred
else:
prediction = np.r_[prediction, pred]
if open:
label_t = label_t.data.cpu().numpy()
if batch_idx == 0:
label_all = label_t
anomaly_score = pred_unk.data.cpu().numpy()
else:
anomaly_score = np.r_[anomaly_score, pred_unk.data.cpu().numpy()]
label_all = np.r_[label_all, label_t]
if open:
Y_test = label_binarize(label_all, classes=[i for i in class_list])
roc = roc_auc_score(Y_test[:, -1], anomaly_score)
else:
roc = 0.0
logger = logging.getLogger(__name__)
logging.basicConfig(filename=name, format="%(message)s")
logger.setLevel(logging.INFO)
close_count = float(per_class_num[:len(class_list) - 1].sum())
acc_close_all = 100. *float(correct_close) / close_count
output = ["step %s"%step,
"acc close all %s" % float(acc_close_all),
"roc %s"% float(roc)]
logger.info(output)
print(output)
gen_submission_files('./submission/sample_submit.txt', dataset_test.dataset.imgs, prediction, anomaly_score)
return acc_close_all, roc
def test_pretrained(step, dataset_test, name, n_share, G,
open=False, entropy=False, thr=None, prob=False, logit=False):
G.eval()
## Known Score Calculation.
correct = 0
correct_close = 0
size = 0
per_class_num = np.zeros((n_share + 1))
per_class_correct = np.zeros((n_share + 1)).astype(np.float32)
class_list = np.unique(dataset_test.dataset.labels)
for batch_idx, data in enumerate(dataset_test):
with torch.no_grad():
img_t, label_t = data[0].cuda(), data[1].cuda()
out_t = G(img_t)
pred = out_t.data.max(1)[1]
correct_close += pred.eq(label_t.data).cpu().sum()
logit_t = out_t
out_t = F.softmax(out_t)
if entropy:
pred_unk = -torch.sum(out_t * torch.log(out_t), 1)
elif prob:
pred_unk = -torch.max(out_t, dim=-1)[0]
else:
pred_unk = -torch.max(logit_t, dim=-1)[0]
correct += pred.eq(label_t.data).cpu().sum()
pred = pred.cpu().numpy()
k = label_t.data.size()[0]
for i, t in enumerate(class_list):
t_ind = np.where(label_t.data.cpu().numpy() == t)
correct_ind = np.where(pred[t_ind[0]] == t)
per_class_correct[i] += float(len(correct_ind[0]))
per_class_num[i] += float(len(t_ind[0]))
size += k
if batch_idx == 0:
prediction = pred
else:
prediction = np.r_[prediction, pred]
if open:
label_t = label_t.data.cpu().numpy()
if batch_idx == 0:
label_all = label_t
anomaly_score = pred_unk.data.cpu().numpy()
else:
anomaly_score = np.r_[anomaly_score, pred_unk.data.cpu().numpy()]
label_all = np.r_[label_all, label_t]
if open:
Y_test = label_binarize(label_all, classes=[i for i in class_list])
roc = roc_auc_score(Y_test[:, -1], anomaly_score)
else:
roc = 0.0
logger = logging.getLogger(__name__)
logging.basicConfig(filename=name, format="%(message)s")
logger.setLevel(logging.INFO)
close_count = float(per_class_num[:len(class_list) - 1].sum())
acc_close_all = 100. *float(correct_close) / close_count
output = ["step %s"%step,
"acc close all %s" % float(acc_close_all),
"roc %s"% float(roc)]
logger.info(output)
print(output)
gen_submission_files('./sample_submit.txt', dataset_test.dataset.imgs, prediction, anomaly_score)
return acc_close_all, roc
def gen_submission_files(outfile, image_names, prediction, anomaly_score):
f = open(outfile, 'w')
for img, pred, score in zip(image_names, prediction, anomaly_score):
f.write('{} {} {}\n'.format(img, pred, score))
f.close()