-
Notifications
You must be signed in to change notification settings - Fork 0
/
DESCRIPTION
80 lines (78 loc) · 1.93 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
Package: cshlcourse
Title: CSHL Statistical Analysis of Genome Scale Data 2024
Version: 0.99.0
Date: 2024-06-09
Authors@R:
c(
person("Leonardo", "Collado-Torres", role = c("aut", "cre"),
email = "lcolladotor@gmail.com", comment = c(ORCID = "0000-0003-2140-308X")),
person("Renee", "Garcia-Flores", email = "renee.garciaflores@gmail.com",
role = c("ctb"), comment = c(ORCID = "0000-0001-8812-120X")),
person("Daianna", "Gonzalez-Padilla", email = "glezdaianna@gmail.com",
role = c("aut"), comment = c(ORCID = "0009-0005-8348-3195")),
person("Melissa", "Mayén Quiroz", email = "yuukiakiamano@gmail.com",
role = c("aut"), comment = c(ORCID = "0009-0006-5985-1397"))
)
Description: This contains information for the portion taught by Leonardo
Collado Torres, Daianna Gonzalez Padilla, and Melissa Mayén Quiroz. It
builds upon the 2023 course by Leo, Daianna, and Renee Garcia Flores.
See Statistical Analysis of Genome Scale Data for more details.
License: Artistic-2.0
Encoding: UTF-8
LazyData: true
Roxygen: list(markdown = TRUE)
RoxygenNote: 7.2.3
URL: https://github.com/lcolladotor/cshl_rstats_genome_scale_2024
Imports:
airway,
AnnotationHub,
AUCell,
circlize,
BiocFileCache,
BiocStyle,
biocthis,
bluster,
bookdown,
celldex,
ComplexHeatmap,
cowplot,
dendextend,
DropletTestFiles,
DropletUtils,
dynamicTreeCut,
edgeR,
EnsDb.Hsapiens.v86,
ExploreModelMatrix,
gert,
ggplot2,
ggrepel,
gh,
gitcreds,
gridExtra,
GSEABase,
here,
Hmisc,
igraph,
iSEE,
limma,
lobstr,
patchwork,
Polychrome,
pheatmap,
postcards,
RColorBrewer,
recount3,
RefManageR,
rlang,
scater,
scran,
scRNAseq,
sessioninfo,
SingleCellExperiment,
SingleR,
smokingMouse,
spatialLIBD,
stringr,
SummarizedExperiment,
usethis,
variancePartition