-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRNN.py
62 lines (50 loc) · 3 KB
/
RNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import pandas as pd
from sklearn.model_selection import train_test_split
import tensorflow as tf
from keras.callbacks import Callback
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout, Reshape
from tensorflow.keras.optimizers import Adam
import os
def study_rnn(epos, socketio):
# Загрузка датасета
current_path = os.getcwd()
file_path = os.path.join(current_path, 'spambase.data')
columns = [
"word_freq_make", "word_freq_address", "word_freq_all", "word_freq_3d", "word_freq_our", "word_freq_over",
"word_freq_remove", "word_freq_internet", "word_freq_order", "word_freq_mail", "word_freq_receive",
"word_freq_will", "word_freq_people", "word_freq_report", "word_freq_addresses", "word_freq_free",
"word_freq_business", "word_freq_email", "word_freq_you", "word_freq_credit", "word_freq_your",
"word_freq_font", "word_freq_000", "word_freq_money", "word_freq_hp", "word_freq_hpl", "word_freq_george",
"word_freq_650", "word_freq_lab", "word_freq_labs", "word_freq_telnet", "word_freq_857", "word_freq_data",
"word_freq_415", "word_freq_85", "word_freq_technology", "word_freq_1999", "word_freq_parts", "word_freq_pm",
"word_freq_direct", "word_freq_cs", "word_freq_meeting", "word_freq_original", "word_freq_project",
"word_freq_re", "word_freq_edu", "word_freq_table", "word_freq_conference", "char_freq_;", "char_freq_(",
"char_freq_[", "char_freq_!", "char_freq_$", "char_freq_#", "capital_run_length_average",
"capital_run_length_longest", "capital_run_length_total", "label"
]
data = pd.read_csv(file_path, header=None, names=columns)
# Разделение данных на признаки и метки
features = data.drop('label', axis=1)
labels = data['label']
# Разделение данных на обучающую и тестовую выборки
X_train, X_test, y_train, y_test = train_test_split(features, labels, test_size=0.2, random_state=42)
# Построение модели
model = Sequential([
Reshape((1, -1), input_shape=(57,)),
LSTM(64, activation='tanh', return_sequences=False),
Dropout(0.5),
Dense(64, activation='relu'),
Dense(1, activation='sigmoid')
])
model.compile(optimizer=Adam(), loss='binary_crossentropy', metrics=['accuracy'])
class SocketCallback(Callback):
def on_epoch_end(self, epoch, logs=None):
progress = {'epoch': epoch, 'loss': logs['loss'], 'val_loss': logs['val_loss']}
socketio.emit('progress_update', progress)
# Обучение модели
history = model.fit(X_train, y_train, epochs=epos, validation_data=(X_test, y_test), verbose=0, callbacks=[SocketCallback()])
# Оценка модели
loss, accuracy = model.evaluate(X_test, y_test, verbose=0)
model.save("model_rnn1.keras")
return f'Точность модели на тестовой выборке: {accuracy:.4f}'