-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbagging_example.py
77 lines (58 loc) · 3.08 KB
/
bagging_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import numpy as np
import string
import pickle
import time
from optimizers import GeneticOptimizer
from optimizers import get_individual_score
from sklearn.model_selection import train_test_split
from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier
if __name__ == "__main__":
print("\n================================================================================")
datasetFolderName = 'UCI_Datasets/'
datasetFileName = 'letter-recognition.data'
letter_mapping = list(string.ascii_uppercase)
letter_dataset = np.loadtxt(datasetFolderName + datasetFileName, delimiter=",")
letter_data = letter_dataset[:, 1:17]
letter_target = letter_dataset[:, 0]
X_train, X_test, y_train, y_test = train_test_split(letter_data, letter_target, test_size=0.5, stratify=letter_target)
X_test, X_val, y_test, y_val = train_test_split(X_test, y_test, test_size=0.5, stratify=y_test)
n_estimators = 100
pop_size = n_estimators // 2
iterations = 100
mutation_rate = 0.05
crossover_rate = 0.75
n_jobs = 8
elitism = True
n_point_crossover = False
print("\nGenerating estimators from Bagging method...")
max_samples_ratio = 0.5
bagging = BaggingClassifier(base_estimator=DecisionTreeClassifier(), n_estimators=n_estimators, max_samples=max_samples_ratio)
bagging.fit(X_train, y_train)
val_initial_score = bagging.score(X_val, y_val)
print("Score on validation split: %f%%" % (val_initial_score * 100))
gen_opt = GeneticOptimizer(estimators=bagging.estimators_,
classes=bagging.classes_,
data=X_test,
target=y_test,
val=(val_initial_score, X_val, y_val),
pop_size=pop_size,
mutation_rate=mutation_rate,
crossover_rate=crossover_rate,
iterations=iterations,
elitism=elitism,
n_point_crossover=n_point_crossover,
n_jobs=n_jobs)
best_found, test_initial_score = gen_opt.run_genetic_evolution()
print()
print("Best individual score found: %f%% (Gain: %f%%)" % (best_found[0] * 100, (best_found[0] - test_initial_score) * 100))
# print("Estimators combination for the best score:")
# print(best_found[1])
print("Number of estimators: %d" % (len([estimator for estimator in best_found[1] if estimator])))
print("\nTesting best combination on validation set...")
final_score = get_individual_score(best_found[1], bagging.estimators_, X_val, y_val, bagging.classes_)
print("Final score: %f%% (Gain: %f%%)" % (final_score * 100, (final_score - val_initial_score) * 100))
filename = 'optimized_model_%d.ens' % int(time.time())
pickle.dump((bagging, best_found[1]), open(filename, 'wb'))
print("\nSaved optimized model as [%s]" % filename)
print("\n================================================================================")