From 2df4396554a42640588c61d980d343bbbea97797 Mon Sep 17 00:00:00 2001 From: jakevc Date: Tue, 20 Feb 2024 12:45:28 -0500 Subject: [PATCH] unused imports, black formatter --- .pymon | Bin 0 -> 24576 bytes .vscode/settings.json | 4 + fibermorph/__init__.py | 4 +- fibermorph/arc_sim.py | 27 +- fibermorph/demo.py | 278 +++++-- fibermorph/dummy_data.py | 214 ++--- fibermorph/fibermorph.py | 1207 +++++++++++++++++----------- fibermorph/test/test_fibermorph.py | 189 +++-- poetry.lock | 97 ++- pyproject.toml | 5 +- 10 files changed, 1270 insertions(+), 755 deletions(-) create mode 100644 .pymon create mode 100644 .vscode/settings.json diff --git a/.pymon b/.pymon new file mode 100644 index 0000000000000000000000000000000000000000..349e479511639eb50ee6e042679e12e951fde14a GIT binary patch literal 24576 zcmeI4U2G#)6@bV2-;mvORkYDQYTZ#}bNTo=$LI{bf5<)`aiR}Z02aqbn6H>(s4^W{MYN><}4+Vk5z1OiP zUT-$rhal0Ok$-0Hz31F}zH{!G@%*@QbK~&$jU*mB_DGNw3wShHN*$o7nG_ zE|-<7Ri&8U(ACv14Ag2H>&nrNdScg<;!>&HtCHf01y)zisk&Cua%;N!OrJJ2mtQRu z6}?zm3N^+>sUy~{?dvagPi3y053LptJFIL}G)2`5#pTlAXx2BhRl>WklJ+^dkRKhJ z`Men6Y}drQt!Eu_z^NPUz+>C`Ab4FIEF1gA)bRMs>}=#)H<*JprK0JoqLmAIGNy2S zq|d2GYdY>k6{S+4aS>Wae7cCDQB=XLmhHL7HnAJnmW_St&A|X*jTLvt_C2>jnj#ao z>b~6!?ju~Fyee9*tm#@o4V}^LQ?V>u59}R`T7lsQD6ktCc@_$`FbZ%hU?X5k)^l1o zWLZcPm(W448^KmrfN*Url0$jN@xElcn`nJ6*rN6{njTTzYT`Pvs&3G6_Vk8+6y#J# zWzh)7KvnkI>eq7RLXO0BcQ!~pnG&Y>2G=mI*sNq9B%N2dCl)sOf zGIodt3=BL5ifW&0p@wI+9o*^WN};&a)8B=? zZq&DpO}vOy))IL>vf3`ef5;diLMO^`6PDhbtlTd2k^@^Onz3Dm$1N}Y_x>`-1V zm6gIu5nWL>&^$|&3#hCtD`k@7l*)Zl>R}_6y-=TYZ(81*5!v0inbWnxtr%xR@_XQ zDI;cxF|(GAC6b~g#$%#bPnd=*Vo8wXs31ipK@+9RQtEPC<^?gHPA8LQOcroblIvpJ zs+*}q%`j`0Xb3e?zzHK6mr}`OGM;$uE0e^o$n+mL@`42j00AHX1b_e#00KY&2mk>f z00e*l5coeN@Tp<-%t_}E==J~cGsE2U`EwIzADx=|L}YS=Y{CKrfB+Bx0zd!=0D+G( zfrGD(PpfL~iYQ*abatFBCml4IX)`6%;-ZzRi-}k|6&GbIDVVrc6Kg`+sP$i%iHVm* znU`fLB_%DphJA7uZF7sKcY?AHJuIYUdfjX8>9(cgUAq+wmV~XJpq1?7hzh>B*S)DZ z^Xq?qhB_|u#w%p`E|+$iSD>kszF7=UQ>^ZzJm`{wz7 zWNU9ePpY}w6Qj)dC!ahe;{|eMj+ew_Oo)Y}Ki+r;yPLt5-oQqy?PL0U0b?*&94b2z zh4RYR6U5Z))BkDy@b{BXWiLEMzn{*$_vpFbZ9G!VzVvB!FYxV=5r!g}JWUirN=l_u z;pmS?VYr5~w@;oGaU8wg_IDVFdkaHFCt=9E`T8HJ$1^{hr1l?9hYMWheQSL7wdy-r zWAB%={=gq*7-nZr4?~hCmviOxLrsUe=k8#?n+e$ZhcR0H3pJ`|^!M*vB@=vVWY5nc7A!c+seVRrm(+MH{P}87cY-7FEuJs=FV9p;X{SY92@mUt+on-hb zm-*UZGW_eiYU4NQM%MT?199L)7>LIoKTQzvlq`{}`46!-Xc{f@)Ct)w(3Mc r` z{;SllJ->I&{WGV0@9%}rWsTq#t?%6be~FvEM7Ll80zd!=00AHX1b_e#00KY&2mk>f z@G&HCa4RyUM#eAR9L`;wsd^`!_Fc{X_~kFZefNViyQzepkPB{ro%!+tx{f`Uey@0r zi4vkL(7%X5StRi>VP$oH==}?uPSo)>Z8ye~|CxyfExz5b>svfF+Z|O2xn>7zw%guC zQ6%$XiWj1>q{JuVyvSoGr6>4K!x%4$d>qX;4BK5K|7g-gqKL@p=-46>W90dO%W`4? z-B`)zNjWd^!cDmU|6>@}U@{N@0zd!=00AHX1b_e#00KY&2z;an(EI;SI%n};Hud&b literal 0 HcmV?d00001 diff --git a/.vscode/settings.json b/.vscode/settings.json new file mode 100644 index 0000000..6c08f50 --- /dev/null +++ b/.vscode/settings.json @@ -0,0 +1,4 @@ +{ + "editor.defaultFormatter": "ms-python.black-formatter", + "editor.formatOnSave": true +} \ No newline at end of file diff --git a/fibermorph/__init__.py b/fibermorph/__init__.py index 0a78ad1..f9e783d 100644 --- a/fibermorph/__init__.py +++ b/fibermorph/__init__.py @@ -1,3 +1,3 @@ - import importlib.metadata -__version__= importlib.metadata.version('fibermorph') \ No newline at end of file + +__version__ = importlib.metadata.version("fibermorph") diff --git a/fibermorph/arc_sim.py b/fibermorph/arc_sim.py index d18983e..9ce6a70 100644 --- a/fibermorph/arc_sim.py +++ b/fibermorph/arc_sim.py @@ -1,10 +1,9 @@ -# %% Imports import sympy from PIL import Image, ImageDraw -import random from random import randint -import pathlib +from sklearn import preprocessing + import numpy as np import pandas as pd import matplotlib.pyplot as plt @@ -42,15 +41,16 @@ # function to generate arc given the start and end angles + def apoints(row): stheta = row[1] etheta = row[2] rthetas = np.linspace(start=stheta, stop=etheta, num=25) x = pd.Series(radius * np.cos(rthetas), name="x") y = pd.Series(radius * np.sin(rthetas), name="y") - + dat2 = pd.concat([x, y], axis=1) - + return dat2 @@ -64,21 +64,18 @@ def apoints(row): def center_func(coord_df): x = coord_df["x"] y = coord_df["y"] - + x2 = pd.Series(x - np.mean(x), name="x2") y2 = pd.Series(y - np.mean(y), name="y2") - + dat3 = pd.concat([x2, y2], axis=1) - + return dat3 dats["c_coords"] = dats["coords"].apply(lambda row: center_func(row)) -from sklearn import preprocessing - - -im = Image.new('L', (xlims, ylims), color="white") +im = Image.new("L", (xlims, ylims), color="white") draw = ImageDraw.Draw(im) coord_list = np.array(dats["c_coords"].iloc[0]) @@ -96,17 +93,17 @@ def center_func(coord_df): # another function to center arcs to the middle of the window but by scaling def center_python_func(coord_df): scaler = preprocessing.MinMaxScaler(feature_range=(0, 200)) - + dat4 = coord_df dat4["x"] = scaler.fit_transform(coord_df[["x"]]) dat4["y"] = scaler.fit_transform(coord_df[["y"]]) - + return dat4 dats["c_coords"] = dats["coords"].apply(lambda row: center_python_func(row)) -im = Image.new('L', (xlims, ylims), color="white") +im = Image.new("L", (xlims, ylims), color="white") draw = ImageDraw.Draw(im) coord_list = np.array(dats["c_coords"].iloc[0]) diff --git a/fibermorph/demo.py b/fibermorph/demo.py index 3a9be84..912a53d 100644 --- a/fibermorph/demo.py +++ b/fibermorph/demo.py @@ -1,5 +1,3 @@ -# %% import - import sympy from skimage import draw @@ -25,8 +23,6 @@ from joblib import Parallel, delayed -# %% functions - def create_results_cache(path): try: datadir = pathlib.Path(path) @@ -36,7 +32,7 @@ def create_results_cache(path): os.makedirs(cache, exist_ok=True) output_directory = os.path.abspath(cache) return output_directory - + except TypeError: tqdm.write("Path is missing.") @@ -60,7 +56,8 @@ def url_files(im_type): demo_url = [ "https://github.com/tinalasisi/fibermorph_DemoData/raw/master/test_input/curv/004_demo_curv.tiff", - "https://github.com/tinalasisi/fibermorph_DemoData/raw/master/test_input/curv/027_demo_nocurv.tiff"] + "https://github.com/tinalasisi/fibermorph_DemoData/raw/master/test_input/curv/027_demo_nocurv.tiff", + ] return demo_url @@ -68,7 +65,8 @@ def url_files(im_type): demo_url = [ "https://github.com/tinalasisi/fibermorph_DemoData/raw/master/test_input/section/140918_demo_section.tiff", - "https://github.com/tinalasisi/fibermorph_DemoData/raw/master/test_input/section/140918_demo_section2.tiff"] + "https://github.com/tinalasisi/fibermorph_DemoData/raw/master/test_input/section/140918_demo_section2.tiff", + ] return demo_url @@ -108,16 +106,28 @@ def validation_curv(output_location, repeats, window_size_px, resolution=1): timestamp = jetzt.strftime("%b%d_%H%M_") testname = str(timestamp + "ValidationTest_Curv") - main_output_path = fibermorph.make_subdirectory(output_location, append_name=testname) + main_output_path = fibermorph.make_subdirectory( + output_location, append_name=testname + ) - dummy_dir = fibermorph.make_subdirectory(main_output_path, append_name="ValidationData") + dummy_dir = fibermorph.make_subdirectory( + main_output_path, append_name="ValidationData" + ) shape_list = ["arc", "line"] replist = [el for el in shape_list for i in range(repeats)] - output_path = fibermorph.make_subdirectory(main_output_path, append_name="ValidationAnalysis") - - for shape in tqdm(replist, desc="Generating & analyzing dummy data", position=0, unit="datasets", leave=True): + output_path = fibermorph.make_subdirectory( + main_output_path, append_name="ValidationAnalysis" + ) + + for shape in tqdm( + replist, + desc="Generating & analyzing dummy data", + position=0, + unit="datasets", + leave=True, + ): # print(shape) df, img, im_path, df_path = dummy_data.dummy_data_gen( output_directory=dummy_dir, @@ -126,29 +136,54 @@ def validation_curv(output_location, repeats, window_size_px, resolution=1): max_elem=1, im_width=5200, im_height=3900, - width=10) - - valid_df = pd.DataFrame(df).sort_values(by=['ref_length'], ignore_index=True).reset_index(drop=True) - - test_df = fibermorph.curvature_seq(im_path, output_path, resolution, window_size_px, window_unit="px", save_img=False, test=True, within_element=False) - - test_df2 = pd.DataFrame(test_df).sort_values(by=['length'], ignore_index=True).reset_index(drop=True) - - col_list = ['error_length'] + width=10, + ) + + valid_df = ( + pd.DataFrame(df) + .sort_values(by=["ref_length"], ignore_index=True) + .reset_index(drop=True) + ) + + test_df = fibermorph.curvature_seq( + im_path, + output_path, + resolution, + window_size_px, + window_unit="px", + save_img=False, + test=True, + within_element=False, + ) + + test_df2 = ( + pd.DataFrame(test_df) + .sort_values(by=["length"], ignore_index=True) + .reset_index(drop=True) + ) + + col_list = ["error_length"] if shape == "arc": # valid_df['index1'] = valid_df['ref_length'] * valid_df['ref_radius'] # valid_df = pd.DataFrame(valid_df).sort_values(by=['index1'], ignore_index=True).reset_index(drop=True) - test_df2['radius'] = 1 / test_df2['curv_median'] + test_df2["radius"] = 1 / test_df2["curv_median"] # test_df2['index2'] = test_df2['length'] * test_df2['radius'] # test_df2 = pd.DataFrame(test_df2).sort_values(by=['index2'], ignore_index=True).reset_index(drop=True) - test_df2['error_radius'] = abs(valid_df['ref_radius'] - test_df2['radius']) / valid_df['ref_radius'] - test_df2['error_curvature'] = abs(valid_df['ref_curvature'] - test_df2['curv_median']) / valid_df[ - 'ref_curvature'] + test_df2["error_radius"] = ( + abs(valid_df["ref_radius"] - test_df2["radius"]) + / valid_df["ref_radius"] + ) + test_df2["error_curvature"] = ( + abs(valid_df["ref_curvature"] - test_df2["curv_median"]) + / valid_df["ref_curvature"] + ) - col_list = ['error_radius', 'error_curvature', 'error_length'] + col_list = ["error_radius", "error_curvature", "error_length"] - test_df2['error_length'] = abs(valid_df['ref_length'] - test_df2['length']) / valid_df['ref_length'] + test_df2["error_length"] = ( + abs(valid_df["ref_length"] - test_df2["length"]) / valid_df["ref_length"] + ) valid_df2 = valid_df.join(test_df2) @@ -166,110 +201,158 @@ def validation_curv(output_location, repeats, window_size_px, resolution=1): return main_output_path -def sim_ellipse(output_directory, im_width_px, im_height_px, min_diam_um, max_diam_um, px_per_um, angle_deg): +def sim_ellipse( + output_directory, + im_width_px, + im_height_px, + min_diam_um, + max_diam_um, + px_per_um, + angle_deg, +): # conversions um_per_inch = 25400 dpi = int(px_per_um * um_per_inch) min_rad_um = min_diam_um / 2 max_rad_um = max_diam_um / 2 - + # image size in inches im_width_inch = (im_width_px / px_per_um) / um_per_inch im_height_inch = (im_height_px / px_per_um) / um_per_inch - + imsize_inch = im_height_inch, im_width_inch imsize_px = im_height_px, im_width_px - + min_rad_px = min_rad_um * px_per_um max_rad_px = max_rad_um * px_per_um - + # generate array of ones (will show up as white background) img = np.ones(imsize_px, dtype=np.uint8) - + # generate ellipse in center of image - rr, cc = draw.ellipse(im_height_px / 2, im_width_px / 2, min_rad_px, max_rad_px, shape=img.shape, - rotation=np.deg2rad(angle_deg)) + rr, cc = draw.ellipse( + im_height_px / 2, + im_width_px / 2, + min_rad_px, + max_rad_px, + shape=img.shape, + rotation=np.deg2rad(angle_deg), + ) img[rr, cc] = 0 - + fig = plt.figure(frameon=False) fig.set_size_inches(im_width_inch, im_height_inch) ax = plt.Axes(fig, [0, 0, 1, 1]) ax.set_axis_off() fig.add_axes(ax) - + p1 = geometry.Point((im_height_px / px_per_um) / 2, (im_width_px / px_per_um) / 2) e1 = geometry.Ellipse(p1, hradius=max_rad_um, vradius=min_rad_um) area = sympy.N(e1.area) eccentricity = e1.eccentricity - ax.imshow(img, cmap="gray", aspect='auto') - + ax.imshow(img, cmap="gray", aspect="auto") + jetzt = datetime.now() timestamp = jetzt.strftime("%b%d_%H%M_%S_%f") - + name = "sim_ellipse_" + str(timestamp) - + im_path = pathlib.Path(output_directory).joinpath(name + ".tiff") df_path = pathlib.Path(output_directory).joinpath(name + ".csv") - data = {'ID': [name], 'area': [area], 'eccentricity': [eccentricity], 'ref_min_diam': [min_diam_um], - 'ref_max_diam': [max_diam_um]} + data = { + "ID": [name], + "area": [area], + "eccentricity": [eccentricity], + "ref_min_diam": [min_diam_um], + "ref_max_diam": [max_diam_um], + } df = pd.DataFrame(data) - + df.to_csv(df_path) - + plt.ioff() fig.savefig(fname=im_path, dpi=um_per_inch) plt.cla() plt.close() - + return df def validation_section(output_location, repeats, jobs=2): - + jetzt = datetime.now() timestamp = jetzt.strftime("%b%d_%H%M_") testname = str(timestamp + "ValidationTest_Section") - main_output_path = fibermorph.make_subdirectory(output_location, append_name=testname) + main_output_path = fibermorph.make_subdirectory( + output_location, append_name=testname + ) + + dummy_dir = fibermorph.make_subdirectory( + main_output_path, append_name="ValidationData" + ) - dummy_dir = fibermorph.make_subdirectory(main_output_path, append_name="ValidationData") - # create list of random variables from range def gen_ellipse_data(): min_diam_um = random.uniform(30, 120) ecc = random.uniform(0.0, 1.0) # min_diam_um = random.uniform(30, max_diam_um) - max_diam_um = geometry.Ellipse(geometry.Point(0,0), vradius=min_diam_um, eccentricity=ecc).hradius + max_diam_um = geometry.Ellipse( + geometry.Point(0, 0), vradius=min_diam_um, eccentricity=ecc + ).hradius angle_deg = random.randint(0, 360) list = [max_diam_um, min_diam_um, angle_deg] return list - + tempdf = [gen_ellipse_data() for i in range(repeats)] - - gen_ellipse_df = pd.DataFrame(tempdf, columns=['max_diam_um', 'min_diam_um', 'angle_deg']) - + + gen_ellipse_df = pd.DataFrame( + tempdf, columns=["max_diam_um", "min_diam_um", "angle_deg"] + ) + df_list = [] # for index, row in tqdm(gen_ellipse_df.iterrows(), desc="Generating ellipses", position=0, unit="datasets", leave=True): # df = sim_ellipse(dummy_dir, 5200, 3900, row['min_diam_um'], row['max_diam_um'], 4.25, row['angle_deg']) # df_list.append(df) - with fibermorph.tqdm_joblib(tqdm(desc="Generating ellipses", position=0, unit="datasets", leave=True, total=len(gen_ellipse_df), miniters=1)) as progress_bar: + with fibermorph.tqdm_joblib( + tqdm( + desc="Generating ellipses", + position=0, + unit="datasets", + leave=True, + total=len(gen_ellipse_df), + miniters=1, + ) + ) as progress_bar: progress_bar.monitor_interval = 1 - df_list = Parallel(n_jobs=jobs, verbose=0)(delayed(sim_ellipse)(dummy_dir, 5200, 3900, row['min_diam_um'], row['max_diam_um'], 4.25, row['angle_deg']) for index, row in gen_ellipse_df.iterrows()) - + df_list = Parallel(n_jobs=jobs, verbose=0)( + delayed(sim_ellipse)( + dummy_dir, + 5200, + 3900, + row["min_diam_um"], + row["max_diam_um"], + 4.25, + row["angle_deg"], + ) + for index, row in gen_ellipse_df.iterrows() + ) + sim_ellipse_sum_df = pd.concat(df_list) - sim_ellipse_sum_df.set_index('ID', inplace=True) + sim_ellipse_sum_df.set_index("ID", inplace=True) - with pathlib.Path(main_output_path).joinpath("summary_" + testname + ".csv") as savename: + with pathlib.Path(main_output_path).joinpath( + "summary_" + testname + ".csv" + ) as savename: sim_ellipse_sum_df.to_csv(savename) - + return main_output_path -# validation_section(output_location="/Users/tpl5158/2020_HairPheno_manuscript/data/raw/fibermorph_input/validation_simulated_hair/section", repeats=100, jobs=4) -# %% Main modules +# validation_section(output_location="/Users/tpl5158/2020_HairPheno_manuscript/data/raw/fibermorph_input/validation_simulated_hair/section", repeats=100, jobs=4) def real_curv(path): @@ -281,19 +364,32 @@ def real_curv(path): True. """ - + fibermorph_demo_dir = create_results_cache(path) - + input_directory = get_data(fibermorph_demo_dir, "curv") jetzt = datetime.now() timestamp = jetzt.strftime("%b%d_%H%M_") testname = str(timestamp + "DemoTest_Curv") - + output_dir = fibermorph.make_subdirectory(fibermorph_demo_dir, append_name=testname) - - fibermorph.curvature(input_directory, output_dir, jobs=1, resolution=132, window_size=0.5, window_unit="mm", save_img=True, within_element=False) - - tqdm.write("\n\nDemo data for fibermorph curvature are in {}\n\nDemo results are in {}\n\n".format(input_directory, output_dir)) + + fibermorph.curvature( + input_directory, + output_dir, + jobs=1, + resolution=132, + window_size=0.5, + window_unit="mm", + save_img=True, + within_element=False, + ) + + tqdm.write( + "\n\nDemo data for fibermorph curvature are in {}\n\nDemo results are in {}\n\n".format( + input_directory, output_dir + ) + ) return True @@ -307,9 +403,9 @@ def real_section(path): True. """ - + fibermorph_demo_dir = create_results_cache(path) - + input_directory = get_data(fibermorph_demo_dir, "section") jetzt = datetime.now() @@ -318,9 +414,21 @@ def real_section(path): output_dir = fibermorph.make_subdirectory(fibermorph_demo_dir, append_name=testname) - fibermorph.section(input_directory, output_dir, jobs=4, resolution=1.06, minsize=20, maxsize=150, save_img=True) - - tqdm.write("\n\nDemo data for fibermorph section are in {}\n\nDemo results are in {}\n\n".format(input_directory, output_dir)) + fibermorph.section( + input_directory, + output_dir, + jobs=4, + resolution=1.06, + minsize=20, + maxsize=150, + save_img=True, + ) + + tqdm.write( + "\n\nDemo data for fibermorph section are in {}\n\nDemo results are in {}\n\n".format( + input_directory, output_dir + ) + ) return True @@ -334,10 +442,14 @@ def dummy_curv(path, repeats=1, window_size_px=10): True. """ - + output_dir = validation_curv(create_results_cache(path), repeats, window_size_px) - - tqdm.write("\n\nValidation data and error analyses for fibermorph curvature are saved in:\n{}\n\n".format(output_dir)) + + tqdm.write( + "\n\nValidation data and error analyses for fibermorph curvature are saved in:\n{}\n\n".format( + output_dir + ) + ) return True @@ -351,9 +463,13 @@ def dummy_section(path, repeats=1): True. """ - + output_dir = validation_section(create_results_cache(path), repeats) - - tqdm.write("\n\nValidation data and error analyses for fibermorph section are saved in:\n{}\n\n".format(output_dir)) + + tqdm.write( + "\n\nValidation data and error analyses for fibermorph section are saved in:\n{}\n\n".format( + output_dir + ) + ) return True diff --git a/fibermorph/dummy_data.py b/fibermorph/dummy_data.py index 2e527f3..f0a0e21 100644 --- a/fibermorph/dummy_data.py +++ b/fibermorph/dummy_data.py @@ -5,7 +5,6 @@ https://stackoverflow.com/questions/4373741/how-can-i-randomly-place-several-non-colliding-rects """ -# %% Imports import sympy from PIL import Image, ImageDraw @@ -17,33 +16,35 @@ import matplotlib.pyplot as plt import os from datetime import datetime +from sklearn import preprocessing from sympy import geometry random.seed() -# %% Random rect generator FUNCTIONS = 0 class Point(object): def __init__(self, x, y): self.x, self.y = x, y - + @staticmethod def from_point(other): return Point(other.x, other.y) class Rect(object): + """Random rect generator""" + def __init__(self, x1, y1, x2, y2): minx, maxx = (x1, x2) if x1 < x2 else (x2, x1) miny, maxy = (y1, y2) if y1 < y2 else (y2, y1) self.min, self.max = Point(minx, miny), Point(maxx, maxy) - + @staticmethod def from_points(p1, p2): return Rect(p1.x, p1.y, p2.x, p2.y) - + width = property(lambda self: self.max.x - self.min.x) height = property(lambda self: self.max.y - self.min.y) @@ -52,9 +53,9 @@ def from_points(p1, p2): def quadsect(rect, factor): - """ Subdivide given rectangle into four non-overlapping rectangles. - 'factor' is an integer representing the proportion of the width or - height the deviation from the center of the rectangle allowed. + """Subdivide given rectangle into four non-overlapping rectangles. + 'factor' is an integer representing the proportion of the width or + height the deviation from the center of the rectangle allowed. """ # pick a point in the interior of given rectangle w, h = rect.width, rect.height # cache properties @@ -62,29 +63,34 @@ def quadsect(rect, factor): delta_x = plus_or_minus(randint(0, w // factor)) delta_y = plus_or_minus(randint(0, h // factor)) interior = Point(center.x + delta_x, center.y + delta_y) - + # create rectangles from the interior point and the corners of the outer one - return [Rect(interior.x, interior.y, rect.min.x, rect.min.y), - Rect(interior.x, interior.y, rect.max.x, rect.min.y), - Rect(interior.x, interior.y, rect.max.x, rect.max.y), - Rect(interior.x, interior.y, rect.min.x, rect.max.y)] + return [ + Rect(interior.x, interior.y, rect.min.x, rect.min.y), + Rect(interior.x, interior.y, rect.max.x, rect.min.y), + Rect(interior.x, interior.y, rect.max.x, rect.max.y), + Rect(interior.x, interior.y, rect.min.x, rect.max.y), + ] def square_subregion(rect): - """ Return a square rectangle centered within the given rectangle """ + """Return a square rectangle centered within the given rectangle""" w, h = rect.width, rect.height # cache properties if w < h: offset = (h - w) // 2 - return Rect(rect.min.x, rect.min.y + offset, - rect.max.x, rect.min.y + offset + w) + return Rect( + rect.min.x, rect.min.y + offset, rect.max.x, rect.min.y + offset + w + ) else: offset = (w - h) // 2 - return Rect(rect.min.x + offset, rect.min.y, - rect.min.x + offset + h, rect.max.y) + return Rect( + rect.min.x + offset, rect.min.y, rect.min.x + offset + h, rect.max.y + ) # %% Image functions + def draw_rect(draw, rect): draw.rectangle([(rect.min.x, rect.min.y), (rect.max.x, rect.max.y)], fill=None) @@ -97,125 +103,126 @@ def draw_arc(draw, rect, width): miny = rect.min.y + pad maxx = rect.max.x - pad maxy = rect.max.y - pad - - draw.arc([(minx, miny), (maxx, maxy)], start=start, end=end, fill="black", width=width) - + + draw.arc( + [(minx, miny), (maxx, maxy)], start=start, end=end, fill="black", width=width + ) + radius = (maxx - minx) / 2 curv = 1 / radius circumference = 2 * np.pi * radius arc_angle = end - start arc_radians = arc_angle / 360 arc_length = arc_radians * circumference - + return radius, arc_length, curv def line_func(radius): radius = 1 - + # set limits for plots # xlims = ylims = c( radius*5, radius*5) xlims = 250 - + ylims = xlims - + # no. of hair to simulate - 25 for now nhair = 25 - + # pick a starting angles for hair segments start_theta = np.random.uniform(low=0, high=np.pi, size=nhair) start_theta = pd.Series(start_theta, name="start_theta") - + # define length of the arc. # The more the curvature, the longer the arc arc_length = np.pi / radius arc_length = pd.Series([arc_length for i in range(nhair)], name="arc_length") - + # set end value of the angle end_theta = start_theta + arc_length end_theta = pd.Series(end_theta, name="end_theta") - + arc_nums = list(range(nhair)) arc_names = pd.Series(["arc_" + str(s) for s in arc_nums], name="arc_names") - + dat = pd.concat([arc_names, start_theta, end_theta, arc_length], axis=1) - + # dat = pd.concat([start_theta, end_theta, arc_length], axis=1) # function to generate arc given the start and end angles - + def apoints(row): stheta = row[1] etheta = row[2] rthetas = np.linspace(start=stheta, stop=etheta, num=25) x = pd.Series(radius * np.cos(rthetas), name="x") y = pd.Series(radius * np.sin(rthetas), name="y") - + dat2 = pd.concat([x, y], axis=1) - + return dat2 - + # dataframe with coordinates for each arc dats = dat - + dats["coords"] = dats.apply(lambda row: apoints(row), axis=1) - + width = 100 - + # center the arcs so they appear at the center of each 'window' - + def center_func(coord_df): x = coord_df["x"] y = coord_df["y"] - + x2 = pd.Series(x - np.mean(x), name="x2") y2 = pd.Series(y - np.mean(y), name="y2") - + dat3 = pd.concat([x2, y2], axis=1) - + return dat3 - - from sklearn import preprocessing - + def center_python_func(coord_df): scaler = preprocessing.MinMaxScaler(feature_range=(0, 200)) - + dat4 = coord_df dat4["x"] = scaler.fit_transform(coord_df[["x"]]) dat4["y"] = scaler.fit_transform(coord_df[["y"]]) - + return dat4 - + # dats["c_coords"] = dats["coords"].apply(lambda row: center_func(row)) dats["c_coords"] = dats["coords"].apply(lambda row: center_python_func(row)) - - im = Image.new('L', (xlims, ylims), color="white") + + im = Image.new("L", (xlims, ylims), color="white") draw = ImageDraw.Draw(im) - + coord_list = np.array(dats["c_coords"].iloc[0]) coord_tuple = tuple(map(tuple, coord_list)) - + x, y = zip(*coord_tuple) plt.scatter(x, y) plt.show() - + draw.line(xy=coord_tuple, fill="black") - + im.show() + def draw_line(draw, rect, width): pad = 40 minx = rect.min.x + pad miny = rect.min.y + pad maxx = rect.max.x - pad maxy = rect.max.y - pad - + draw.line([(minx, miny), (maxx, maxy)], fill="black", width=width) - - width = (maxx - minx) - height = (maxy - miny) - - diag_length = np.sqrt((width ** 2) + (height ** 2)) - + + width = maxx - minx + height = maxy - miny + + diag_length = np.sqrt((width**2) + (height**2)) + return diag_length @@ -225,100 +232,113 @@ def draw_ellipse(draw, rect, width): miny = rect.min.y + pad maxx = rect.max.x - pad maxy = rect.max.y - pad - + draw.ellipse([(minx, miny), (maxx, maxy)], fill="black", width=width) - + # values for min and max and area of ellipses to pass to dataframe - width_df = (maxx - minx) - height_df = (maxy - miny) - r1 = (width_df / 2) - r2 = (height_df / 2) + width_df = maxx - minx + height_df = maxy - miny + r1 = width_df / 2 + r2 = height_df / 2 p1 = geometry.Point(0, 0) e1 = geometry.Ellipse(p1, r1, r2) area = sympy.N(e1.area) - + return width_df, height_df, area def create_data(df, image, output_directory, shape): jetzt = datetime.now() timestamp = jetzt.strftime("%b%d_%H%M_%S_%f_") - df_path = df.to_csv(pathlib.Path(output_directory).joinpath(timestamp + shape + "_data.csv")) + df_path = df.to_csv( + pathlib.Path(output_directory).joinpath(timestamp + shape + "_data.csv") + ) # print(df) im_path = pathlib.Path(output_directory).joinpath(timestamp + shape + "_data.tiff") image.save(im_path) # print(im_path) - - return df, image, im_path, df_path + return df, image, im_path, df_path -# %% Generate random bounding boxes def bounding_box(min_elem, max_elem, im_width, im_height): + """Generate random bounding boxes""" NUM_RECTS = random.randint(min_elem, max_elem) - + REGION = Rect(0, 0, im_width, im_height) # Size of the total rectangle/image - + # call quadsect() until at least the number of rects wanted has been generated rects = [REGION] # seed output list while len(rects) <= NUM_RECTS: - rects = [subrect for rect in rects - for subrect in quadsect(rect, 6)] - + rects = [subrect for rect in rects for subrect in quadsect(rect, 6)] + random.shuffle(rects) # mix them up sample = random.sample(rects, NUM_RECTS) # select the desired number - - return REGION, rects, sample + return REGION, rects, sample -# %% Draw image -def dummy_data_gen(output_directory, shape="arc", min_elem=10, max_elem=20, im_width=5200, im_height=3900, width=10): +def dummy_data_gen( + output_directory, + shape="arc", + min_elem=10, + max_elem=20, + im_width=5200, + im_height=3900, + width=10, +): + """Draw image""" REGION, rects, sample = bounding_box(min_elem, max_elem, im_width, im_height) - + imgx, imgy = REGION.max.x + 1, REGION.max.y + 1 image = Image.new("RGB", (imgx, imgy), color="white") # create color image draw = ImageDraw.Draw(image) - + # first draw outlines of all the non-overlapping rectangles generated for rect in rects: draw_rect(draw, rect) - + if shape == "line": data = [ draw_line(draw, rect, width) for rect in sample - if (rect.width > 132 and rect.height > 132)] - df = pd.DataFrame(data, columns=['ref_length']) + if (rect.width > 132 and rect.height > 132) + ] + df = pd.DataFrame(data, columns=["ref_length"]) df, img, im_path, df_path = create_data(df, image, output_directory, shape) return df, img, im_path, df_path - + elif shape == "arc": data = [ draw_arc(draw, square_subregion(rect), width) for rect in sample - if (rect.width > 132 and rect.height > 132)] - df = pd.DataFrame(data, columns=['ref_radius', 'ref_length', 'ref_curvature']) + if (rect.width > 132 and rect.height > 132) + ] + df = pd.DataFrame(data, columns=["ref_radius", "ref_length", "ref_curvature"]) df, img, im_path, df_path = create_data(df, image, output_directory, shape) return df, img, im_path, df_path - + elif shape == "ellipse": data = [ draw_ellipse(draw, rect, width) for rect in sample - if (rect.width > 132 and rect.height > 132)] - df = pd.DataFrame(data, columns=['ref_width', 'ref_height', 'ref_area']) + if (rect.width > 132 and rect.height > 132) + ] + df = pd.DataFrame(data, columns=["ref_width", "ref_height", "ref_area"]) df, img, im_path, df_path = create_data(df, image, output_directory, shape) return df, img, im_path, df_path - + elif shape == "circle": data = [ draw_ellipse(draw, square_subregion(rect), width) for rect in sample - if (rect.width > 132 and rect.height > 132)] - df = pd.DataFrame(data, columns=['ref_width', 'ref_height', 'ref_area']) + if (rect.width > 132 and rect.height > 132) + ] + df = pd.DataFrame(data, columns=["ref_width", "ref_height", "ref_area"]) df, img, im_path, df_path = create_data(df, image, output_directory, shape) return df, img, im_path, df_path - + else: - print("The shape value that has been input is incorrect, check options for shape again.") + print( + "The shape value that has been input is incorrect, check options for shape again." + ) diff --git a/fibermorph/fibermorph.py b/fibermorph/fibermorph.py index 4fbc083..549f107 100644 --- a/fibermorph/fibermorph.py +++ b/fibermorph/fibermorph.py @@ -30,10 +30,12 @@ from skimage.segmentation import clear_border from skimage.util import invert from tqdm import tqdm + sys.path.append(os.path.dirname(os.path.abspath(__file__))) import demo from fibermorph import __version__ + def parse_args(): """ Parse command-line arguments @@ -43,75 +45,124 @@ def parse_args(): """ parser = argparse.ArgumentParser(description="fibermorph") - parser.add_argument('--version', action='version', version=f'%(prog)s {__version__}') - parser.add_argument( - "-o", "--output_directory", metavar="", default=None, + "--version", action="version", version=f"%(prog)s {__version__}" + ) + + parser.add_argument( + "-o", + "--output_directory", + metavar="", + default=None, help="Required. Full path to and name of desired output directory. " - "Will be created if it doesn't exist.") - + "Will be created if it doesn't exist.", + ) + parser.add_argument( - "-i", "--input_directory", metavar="", default=None, + "-i", + "--input_directory", + metavar="", + default=None, help="Required. Full path to and name of desired directory containing " - "input files.") + "input files.", + ) parser.add_argument( - "--jobs", type=int, metavar="", default=1, - help="Integer. Number of parallel jobs to run. Default is 1.") + "--jobs", + type=int, + metavar="", + default=1, + help="Integer. Number of parallel jobs to run. Default is 1.", + ) parser.add_argument( - "-s", "--save_image", action="store_true", default=False, + "-s", + "--save_image", + action="store_true", + default=False, help="Default is False. Will save intermediate curvature/section processing images if --save_image flag is " - "included.") + "included.", + ) gr_curv = parser.add_argument_group( "curvature options", "arguments used specifically for curvature module" ) - + gr_curv.add_argument( - "--resolution_mm", type=int, metavar="", default=132, - help="Integer. Number of pixels per mm for curvature analysis. Default is 132.") + "--resolution_mm", + type=int, + metavar="", + default=132, + help="Integer. Number of pixels per mm for curvature analysis. Default is 132.", + ) gr_curv.add_argument( - "--window_size", metavar="", default=None, nargs='+', + "--window_size", + metavar="", + default=None, + nargs="+", help="Float or integer or None. Desired size for window of measurement for curvature analysis in pixels or mm (given " - "the flag --window_unit). If nothing is entered, the default is None and the entire hair will be used to for the curve fitting.") + "the flag --window_unit). If nothing is entered, the default is None and the entire hair will be used to for the curve fitting.", + ) gr_curv.add_argument( - "--window_unit", type=str, default="px", choices=["px", "mm"], + "--window_unit", + type=str, + default="px", + choices=["px", "mm"], help="String. Unit of measurement for window of measurement for curvature analysis. Can be 'px' (pixels) or " - "'mm'. Default is 'px'.") + "'mm'. Default is 'px'.", + ) gr_curv.add_argument( - "-W", "--within_element", action="store_true", default=False, + "-W", + "--within_element", + action="store_true", + default=False, help="Boolean. Default is False. Will create an additional directory with spreadsheets of raw curvature " - "measurements for each hair if the --within_element flag is included." + "measurements for each hair if the --within_element flag is included.", ) - + gr_sect = parser.add_argument_group( "section options", "arguments used specifically for section module" ) - + gr_sect.add_argument( - "--resolution_mu", type=float, metavar="", default=4.25, - help="Float. Number of pixels per micron for section analysis. Default is 4.25.") + "--resolution_mu", + type=float, + metavar="", + default=4.25, + help="Float. Number of pixels per micron for section analysis. Default is 4.25.", + ) gr_sect.add_argument( - "--minsize", type=int, metavar="", default=20, - help="Integer. Minimum diameter in microns for sections. Default is 20.") + "--minsize", + type=int, + metavar="", + default=20, + help="Integer. Minimum diameter in microns for sections. Default is 20.", + ) gr_sect.add_argument( - "--maxsize", type=int, metavar="", default=150, - help="Integer. Maximum diameter in microns for sections. Default is 150.") + "--maxsize", + type=int, + metavar="", + default=150, + help="Integer. Maximum diameter in microns for sections. Default is 150.", + ) gr_raw = parser.add_argument_group( "raw2gray options", "arguments used specifically for raw2gray module" ) - + gr_raw.add_argument( - "--file_extension", type=str, metavar="", default=".RW2", + "--file_extension", + type=str, + metavar="", + default=".RW2", help="Optional. String. Extension of input files to use in input_directory when using raw2gray function. " - "Default is .RW2.") + "Default is .RW2.", + ) # gr_demo = parser.add_argument_group( # "demo options", "arguments used specifically for section and curvature demo_dummy modules" @@ -124,30 +175,46 @@ def parse_args(): # Create mutually exclusive flags for each of fibermorph's modules group = parser.add_argument_group( - "fibermorph module options", "mutually exclusive modules that can be run with the fibermorph package" + "fibermorph module options", + "mutually exclusive modules that can be run with the fibermorph package", ) module_group = group.add_mutually_exclusive_group(required=True) - + module_group.add_argument( - "--raw2gray", action="store_true", default=False, - help="Convert raw image files to grayscale TIFF files.") - + "--raw2gray", + action="store_true", + default=False, + help="Convert raw image files to grayscale TIFF files.", + ) + module_group.add_argument( - "--curvature", action="store_true", default=False, - help="Analyze curvature in grayscale TIFF images.") - + "--curvature", + action="store_true", + default=False, + help="Analyze curvature in grayscale TIFF images.", + ) + module_group.add_argument( - "--section", action="store_true", default=False, - help="Analyze cross-sections in grayscale TIFF images.") - + "--section", + action="store_true", + default=False, + help="Analyze cross-sections in grayscale TIFF images.", + ) + module_group.add_argument( - "--demo_real_curv", action="store_true", default=False, - help="A demo of fibermorph curvature analysis with real data.") - + "--demo_real_curv", + action="store_true", + default=False, + help="A demo of fibermorph curvature analysis with real data.", + ) + module_group.add_argument( - "--demo_real_section", action="store_true", default=False, - help="A demo of fibermorph section analysis with real data.") - + "--demo_real_section", + action="store_true", + default=False, + help="A demo of fibermorph section analysis with real data.", + ) + # module_group.add_argument( # "--demo_dummy_curv", action="store_true", default=False, # help="A demo of fibermorph curvature with dummy data. Arcs and lines are generated, analyzed and error is " @@ -157,13 +224,13 @@ def parse_args(): # "--demo_dummy_section", action="store_true", default=False, # help="A demo of fibermorph section with dummy data. Circles and ellipses are generated, analyzed and error is " # "calculated.") - + # module_group.add_argument( # "--delete_dir", action="store_true", default=False, # help="Delete any directory generated in analysis.") - + args = parser.parse_args() - + # # Validate arguments # demo_mods = [ # args.demo_real_curv, @@ -171,12 +238,10 @@ def parse_args(): # args.demo_dummy_curv, # args.demo_dummy_section, # args.delete_dir] - + # Validate arguments (without dummy data) - demo_mods = [ - args.demo_real_curv, - args.demo_real_section] - + demo_mods = [args.demo_real_curv, args.demo_real_section] + if any(demo_mods) is False: if args.input_directory is None and args.output_directory is None: sys.exit("ExitError: need both --input_directory and --output_directory") @@ -184,14 +249,16 @@ def parse_args(): sys.exit("ExitError: need --input_directory") if args.output_directory is None: sys.exit("ExitError: need --output_directory") - + else: if args.output_directory is None: sys.exit("ExitError: need --output_directory") - + return args -#%% + +# %% + def timing(f): @wraps(f) @@ -202,25 +269,29 @@ def wrap(*args, **kw): te = timeit.default_timer() total_time = convert(te - ts) print( - '\n\nThe function: {} \n\n with args:[{},\n{}] \n\n and result: {} \n\nTotal time: {}\n\n'.format( - f.__name__, args, kw, result, total_time)) + "\n\nThe function: {} \n\n with args:[{},\n{}] \n\n and result: {} \n\nTotal time: {}\n\n".format( + f.__name__, args, kw, result, total_time + ) + ) return result - + return wrap + def blockPrint(f): @wraps(f) def wrap(*args, **kw): # block all printing to the console - sys.stdout = open(os.devnull, 'w') + sys.stdout = open(os.devnull, "w") # call the method in question value = f(*args, **kw) # enable all printing to the console sys.stdout = sys.__stdout__ # pass the return value of the method back return value + return wrap - + # Rest of the functions--organized alphabetically @@ -241,10 +312,10 @@ def copy_if_exist(file, directory): True or false depending on whether copying was successful. """ - + path = pathlib.Path(file) destination = directory - + if os.path.isfile(path): shutil.copy(path, destination) # print('file has been copied'.format(path)) @@ -291,34 +362,35 @@ def make_subdirectory(directory, append_name=""): A pathlib object for the subdirectory created. """ - + # Define the path of the directory within which this function will make a subdirectory. directory = pathlib.Path(directory) # The name of the subdirectory. append_name = str(append_name) # Define the output path by the initial directory and join (i.e. "+") the appropriate text. output_path = pathlib.Path(directory).joinpath(str(append_name)) - + # Use pathlib to see if the output path exists, if it is there it returns True if pathlib.Path(output_path).exists() == False: - + # Prints a status method to the console using the format option, which fills in the {} with whatever # is in the (). print( "This output path doesn't exist:\n {} \n Creating...".format( - output_path)) - + output_path + ) + ) + # Use pathlib to create the folder. pathlib.Path.mkdir(output_path, parents=True, exist_ok=True) - + # Prints a status to let you know that the folder has been created print("Output path has been created") - + # Since it's a boolean return, and True is the only other option we will simply print the output. else: # This will print exactly what you tell it, including the space. The backslash n means new line. - print("Output path already exists:\n {}".format( - output_path)) + print("Output path already exists:\n {}".format(output_path)) return output_path @@ -340,11 +412,11 @@ def list_images(directory): """ exts = [".tif", ".tiff"] mainpath = pathlib.Path(directory) - file_list = [p for p in pathlib.Path(mainpath).rglob('*') if p.suffix in exts] - + file_list = [p for p in pathlib.Path(mainpath).rglob("*") if p.suffix in exts] + list.sort(file_list) # sort the files # print(len(file_list)) # printed the sorted files - + return file_list @@ -365,7 +437,7 @@ def raw_to_gray(imgfile, output_directory): A pathlib object with the path to the converted image file. """ - + imgfile = os.path.abspath(imgfile) output_directory = output_directory basename = os.path.basename(imgfile) @@ -373,61 +445,95 @@ def raw_to_gray(imgfile, output_directory): output_name = pathlib.Path(output_directory).joinpath(name) # print("\n\n") # print(name) - + try: with rawpy.imread(imgfile) as raw: rgb = raw.postprocess(use_auto_wb=True) - im = Image.fromarray(rgb).convert('LA') + im = Image.fromarray(rgb).convert("LA") im.save(str(output_name)) except: # print("\nSomething is wrong with {}\n".format(str(imgfile))) pass - + # print('{} has been successfully converted to a grayscale tiff.\n Path is {}\n'.format(name, output_name)) - + return output_name def section_props(props, im_name, resolution, minpixel, maxpixel, im_center): props_df = [ - [region.label, region.centroid, scipy.spatial.distance.euclidean(im_center, region.centroid), region.filled_area, region.minor_axis_length, region.major_axis_length, region.eccentricity, region.filled_image, region.bbox] - for region - in props if region.minor_axis_length >= minpixel and region.major_axis_length <= maxpixel] - props_df = pd.DataFrame(props_df, columns=['label', 'centroid', 'distance', 'area', 'min', 'max', 'eccentricity', 'image', 'bbox']) - - section_id = props_df['distance'].astype(float).idxmin() + [ + region.label, + region.centroid, + scipy.spatial.distance.euclidean(im_center, region.centroid), + region.filled_area, + region.minor_axis_length, + region.major_axis_length, + region.eccentricity, + region.filled_image, + region.bbox, + ] + for region in props + if region.minor_axis_length >= minpixel and region.major_axis_length <= maxpixel + ] + props_df = pd.DataFrame( + props_df, + columns=[ + "label", + "centroid", + "distance", + "area", + "min", + "max", + "eccentricity", + "image", + "bbox", + ], + ) + + section_id = props_df["distance"].astype(float).idxmin() # print(section_id) - + section = props_df.iloc[section_id] - - area_mu = section['area'] / np.square(resolution) - min_diam = section['min'] / resolution - max_diam = section['max'] / resolution - eccentricity = section['eccentricity'] - + + area_mu = section["area"] / np.square(resolution) + min_diam = section["min"] / resolution + max_diam = section["max"] / resolution + eccentricity = section["eccentricity"] + section_data = pd.DataFrame( - {'ID': [im_name], 'area': [area_mu], 'eccentricity': [eccentricity], 'min': [min_diam], - 'max': [max_diam]}) - - bin_im = section['image'] - bbox = section['bbox'] - + { + "ID": [im_name], + "area": [area_mu], + "eccentricity": [eccentricity], + "min": [min_diam], + "max": [max_diam], + } + ) + + bin_im = section["image"] + bbox = section["bbox"] + return section_data, bin_im, bbox def crop_section(img, im_name, resolution, minpixel, maxpixel, im_center): - + try: # binarize thresh = skimage.filters.threshold_minimum(img) bin_img = skimage.segmentation.clear_border(img < thresh) # label the image - label_im, num_elem = skimage.measure.label(bin_img, connectivity=2, return_num=True) - + label_im, num_elem = skimage.measure.label( + bin_img, connectivity=2, return_num=True + ) + props = skimage.measure.regionprops(label_image=label_im, intensity_image=img) - - section_data, bin_im, bbox = section_props(props, im_name, resolution, minpixel, maxpixel, im_center) - + + section_data, bin_im, bbox = section_props( + props, im_name, resolution, minpixel, maxpixel, im_center + ) + pad = 100 minr = bbox[0] - pad minc = bbox[1] - pad @@ -435,44 +541,60 @@ def crop_section(img, im_name, resolution, minpixel, maxpixel, im_center): maxc = bbox[3] + pad bbox_pad = [minc, minr, maxc, maxr] crop_im = np.asarray(Image.fromarray(img).crop(bbox_pad)) - + except: minr = int(im_center[0] / 2) minc = int(im_center[1] / 2) maxr = int(im_center[0] * 1.5) maxc = int(im_center[1] * 1.5) - + bbox_pad = [minc, minr, maxc, maxr] # print("Error: \n Found no bbox for {} \n Used center 25% of image instead: {}".format(im_name, str(bbox_pad))) - + crop_im = np.asarray(Image.fromarray(img).crop(bbox_pad)) - + return crop_im + def segment_section(crop_im, im_name, resolution, minpixel, maxpixel, im_center): try: thresh = skimage.filters.threshold_minimum(crop_im) bin_ls_set = crop_im < thresh - seg_im = skimage.segmentation.morphological_chan_vese(np.asarray(crop_im), 40, init_level_set=bin_ls_set, smoothing=4) - + seg_im = skimage.segmentation.morphological_chan_vese( + np.asarray(crop_im), 40, init_level_set=bin_ls_set, smoothing=4 + ) + seg_im_inv = np.asarray(seg_im != 0) - - crop_label_im, num_elem = skimage.measure.label(seg_im_inv, connectivity=2, return_num=True) - - crop_props = skimage.measure.regionprops(label_image=crop_label_im, intensity_image=np.asarray(crop_im)) - - section_data, bin_im, bbox = section_props(crop_props, im_name, resolution, minpixel, maxpixel, im_center) - + + crop_label_im, num_elem = skimage.measure.label( + seg_im_inv, connectivity=2, return_num=True + ) + + crop_props = skimage.measure.regionprops( + label_image=crop_label_im, intensity_image=np.asarray(crop_im) + ) + + section_data, bin_im, bbox = section_props( + crop_props, im_name, resolution, minpixel, maxpixel, im_center + ) + except: section_data = pd.DataFrame( - {'ID': [np.nan], 'area': [np.nan], 'eccentricity': [np.nan], 'min': [np.nan], - 'max': [np.nan]}) + { + "ID": [np.nan], + "area": [np.nan], + "eccentricity": [np.nan], + "min": [np.nan], + "max": [np.nan], + } + ) thresh = skimage.filters.threshold_minimum(crop_im) bin_im = crop_im < thresh - + return section_data, bin_im + def save_sections(output_path, im_name, im, save_crop=False): if save_crop: crop_path = make_subdirectory(output_path, "crop") @@ -481,13 +603,14 @@ def save_sections(output_path, im_name, im, save_crop=False): skimage.io.imsave(str(savename), im) except AttributeError: im.save(savename) - + else: binary_path = make_subdirectory(output_path, "binary") with pathlib.Path(binary_path).joinpath(im_name + ".tiff") as savename: im = Image.fromarray(im) im.save(savename) - + + # # @timing @blockPrint def section_seq(input_file, output_path, resolution, minsize, maxsize, save_img): @@ -504,37 +627,45 @@ def section_seq(input_file, output_path, resolution, minsize, maxsize, save_img) An ndarray of the segmented (binary) image. """ - - with tqdm(total=3, desc="section analysis sequence", unit="steps", position=1, leave=None) as pbar: + + with tqdm( + total=3, desc="section analysis sequence", unit="steps", position=1, leave=None + ) as pbar: for i in [input_file]: - + section_data = pd.DataFrame() - + try: # read in file img, im_name = imread(input_file, use_skimage=True) - + # Gets the unique values in the image matrix. Since it is binary, there should only be 2. unique, counts = np.unique(img, return_counts=True) - + # find center of image im_center = list(np.divide(img.shape, 2)) # returns array of two floats - + minpixel = minsize * resolution maxpixel = maxsize * resolution - + pbar.update(1) - + if len(unique) == 2: seg_im = skimage.util.invert(img) pbar.update(1) - label_im, num_elem = skimage.measure.label(seg_im, connectivity=2, return_num=True) - - props = skimage.measure.regionprops(label_image=label_im, intensity_image=img) - - section_data, bin_im, bbox = section_props(props, im_name, resolution, minpixel, maxpixel, im_center) - + label_im, num_elem = skimage.measure.label( + seg_im, connectivity=2, return_num=True + ) + + props = skimage.measure.regionprops( + label_image=label_im, intensity_image=img + ) + + section_data, bin_im, bbox = section_props( + props, im_name, resolution, minpixel, maxpixel, im_center + ) + pad = 100 minr = bbox[0] - pad minc = bbox[1] - pad @@ -542,27 +673,31 @@ def section_seq(input_file, output_path, resolution, minsize, maxsize, save_img) maxc = bbox[3] + pad bbox_pad = [minc, minr, maxc, maxr] crop_im = Image.fromarray(img).crop(bbox_pad) - + if save_img: save_sections(output_path, im_name, crop_im, save_crop=True) save_sections(output_path, im_name, bin_im, save_crop=False) - + pbar.update(1) else: - crop_im = crop_section(img, im_name, resolution, minpixel, maxpixel, im_center) + crop_im = crop_section( + img, im_name, resolution, minpixel, maxpixel, im_center + ) pbar.update(1) - - section_data, bin_im = segment_section(crop_im, im_name, resolution, minpixel, maxpixel, im_center) - + + section_data, bin_im = segment_section( + crop_im, im_name, resolution, minpixel, maxpixel, im_center + ) + if save_img: save_sections(output_path, im_name, crop_im, save_crop=True) save_sections(output_path, im_name, bin_im, save_crop=False) pbar.update(1) except: pass - + return section_data - + # # @timing @blockPrint @@ -586,12 +721,12 @@ def filter_curv(input_file, output_path, save_img): A string with the image name. """ - + # create pathlib object for input Image input_path = pathlib.Path(input_file) - + gray_img, im_name = imread(input_path) - + # # extract image name # im_name = input_path.stem # @@ -599,19 +734,19 @@ def filter_curv(input_file, output_path, save_img): # gray_img = cv2.imread(str(input_path), 0) # type(gray_img) # # print("Image size is:", gray_img.shape) - + # use frangi ridge filter to find hairs, the output will be inverted filter_img = skimage.filters.frangi(gray_img) type(filter_img) # print("Image size is:", filter_img.shape) - + if save_img: output_path = make_subdirectory(output_path, append_name="filtered") # inverting and saving the filtered image img_inv = skimage.util.invert(filter_img) with pathlib.Path(output_path).joinpath(im_name + ".tiff") as save_path: plt.imsave(save_path, img_inv, cmap="gray") - + return filter_img, im_name @@ -637,33 +772,33 @@ def binarize_curv(filter_img, im_name, output_path, save_img): An array with the binarized image. """ - + selem = skimage.morphology.disk(5) - + filter_img = skimage.exposure.adjust_log(filter_img) - + try: thresh_im = filter_img > filters.threshold_otsu(filter_img) except: thresh_im = skimage.util.invert(filter_img) - + # clear the border of the image (buffer is the px width to be considered as border) cleared_im = skimage.segmentation.clear_border(thresh_im, buffer_size=10) - + # dilate the hair fibers binary_im = scipy.ndimage.binary_dilation(cleared_im, structure=selem, iterations=2) - + if save_img: output_path = make_subdirectory(output_path, append_name="binarized") # invert image save_im = skimage.util.invert(binary_im) - + # save image with pathlib.Path(output_path).joinpath(im_name + ".tiff") as save_name: im = Image.fromarray(save_im) im.save(save_name) return binary_im - + else: return binary_im @@ -699,8 +834,10 @@ def remove_particles(img, output_path, name, minpixel, prune, save_img): minimum = minpixel # clean = skimage.morphology.diameter_opening(img, diameter_threshold=minimum) - clean = skimage.morphology.remove_small_objects(img, connectivity=2, min_size=minimum) - + clean = skimage.morphology.remove_small_objects( + img, connectivity=2, min_size=minimum + ) + if save_img: img_inv = skimage.util.invert(clean) if prune: @@ -708,8 +845,8 @@ def remove_particles(img, output_path, name, minpixel, prune, save_img): else: output_path = make_subdirectory(output_path, append_name="clean") with pathlib.Path(output_path).joinpath(name + ".tiff") as savename: - plt.imsave(savename, img_inv, cmap='gray') - + plt.imsave(savename, img_inv, cmap="gray") + return clean @@ -731,14 +868,14 @@ def check_bin(img): """ img_bool = np.asarray(img, dtype=bool) - + # Gets the unique values in the image matrix. Since it is binary, there should only be 2. unique, counts = np.unique(img_bool, return_counts=True) # print(unique) # print("Found this many counts:") # print(len(counts)) # print(counts) - + # If the length of unique is not 2 then print that the image isn't a binary. if len(unique) != 2: # print("Image is not binarized!") @@ -750,11 +887,11 @@ def check_bin(img): img = skimage.util.invert(img_bool) # print("Now {} is reversed =)".format(str(img))) return img - + else: # print("{} is already reversed".format(str(img))) img = img_bool - + # print(type(img)) return img @@ -783,10 +920,10 @@ def skeletonize(clean_img, name, output_path, save_img): """ # check if image is binary and properly inverted clean_img = check_bin(clean_img) - + # skeletonize the hair skeleton = skimage.morphology.thin(clean_img) - + if save_img: output_path = make_subdirectory(output_path, append_name="skeletonized") img_inv = skimage.util.invert(skeleton) @@ -794,10 +931,10 @@ def skeletonize(clean_img, name, output_path, save_img): im = Image.fromarray(img_inv) im.save(output_path) return skeleton - + else: # print("\n Done skeletonizing {}".format(name)) - + return skeleton @@ -824,75 +961,73 @@ def prune(skeleton, name, pruned_dir, save_img): Boolean array of pruned skeleton image. """ - + # print("\nPruning {}...\n".format(name)) - + # identify 3-way branch-points - hit1 = np.array([[0, 1, 0], - [0, 1, 0], - [1, 0, 1]], dtype=np.uint8) - hit2 = np.array([[1, 0, 0], - [0, 1, 0], - [1, 0, 1]], dtype=np.uint8) - hit3 = np.array([[1, 0, 0], - [0, 1, 1], - [0, 1, 0]], dtype=np.uint8) + hit1 = np.array([[0, 1, 0], [0, 1, 0], [1, 0, 1]], dtype=np.uint8) + hit2 = np.array([[1, 0, 0], [0, 1, 0], [1, 0, 1]], dtype=np.uint8) + hit3 = np.array([[1, 0, 0], [0, 1, 1], [0, 1, 0]], dtype=np.uint8) hit_list = [hit1, hit2, hit3] - + # numpy slicing to create 3 remaining rotations for ii in range(9): hit_list.append(np.transpose(hit_list[-3])[::-1, ...]) - + # add structure elements for branch-points four 4-way branchpoints - hit3 = np.array([[0, 1, 0], - [1, 1, 1], - [0, 1, 0]], dtype=np.uint8) - hit4 = np.array([[1, 0, 1], - [0, 1, 0], - [1, 0, 1]], dtype=np.uint8) + hit3 = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]], dtype=np.uint8) + hit4 = np.array([[1, 0, 1], [0, 1, 0], [1, 0, 1]], dtype=np.uint8) hit_list.append(hit3) hit_list.append(hit4) # print("Creating hit and miss list") - + skel_image = check_bin(skeleton) # print("Converting image to binary array") - + branch_points = np.zeros(skel_image.shape) # print("Creating empty array for branch points") - + for hit in hit_list: target = hit.sum() curr = ndimage.convolve(skel_image, hit, mode="constant") branch_points = np.logical_or(branch_points, np.where(curr == target, 1, 0)) - + # print("Completed collection of branch points") - + # pixels may "hit" multiple structure elements, ensure the output is a binary image branch_points_image = np.where(branch_points, 1, 0) # print("Ensuring binary") - + # use SciPy's ndimage module for locating and determining coordinates of each branch-point labels, num_labels = ndimage.label(branch_points_image) # print("Labelling branches") - + # use SciPy's ndimage module to determine the coordinates/pixel corresponding to the center of mass of each # branchpoint - branch_points = ndimage.center_of_mass(skel_image, labels=labels, index=range(1, num_labels + 1)) - branch_points = np.array([value for value in branch_points if not np.isnan(value[0]) or not np.isnan(value[1])], - dtype=int) + branch_points = ndimage.center_of_mass( + skel_image, labels=labels, index=range(1, num_labels + 1) + ) + branch_points = np.array( + [ + value + for value in branch_points + if not np.isnan(value[0]) or not np.isnan(value[1]) + ], + dtype=int, + ) # num_branch_points = len(branch_points) - - hit = np.array([[0, 0, 0], - [0, 1, 0], - [0, 0, 0]], dtype=np.uint8) - - dilated_branches = ndimage.convolve(branch_points_image, hit, mode='constant') + + hit = np.array([[0, 0, 0], [0, 1, 0], [0, 0, 0]], dtype=np.uint8) + + dilated_branches = ndimage.convolve(branch_points_image, hit, mode="constant") dilated_branches_image = np.where(dilated_branches, 1, 0) # print("Ensuring binary dilated branches") pruned_image = np.subtract(skel_image, dilated_branches_image) # pruned_image = np.subtract(skel_image, branch_points_image) - - pruned_image = remove_particles(pruned_image, pruned_dir, name, minpixel=5, prune=True, save_img=save_img) + + pruned_image = remove_particles( + pruned_image, pruned_dir, name, minpixel=5, prune=True, save_img=save_img + ) return pruned_image @@ -918,56 +1053,32 @@ def diag(skeleton): Boolean array of pruned skeleton image. """ - + # identify diagonals - hit1 = np.array([[0, 0, 0], - [0, 1, 1], - [1, 0, 0]], dtype=np.uint8) - hit2 = np.array([[1, 0, 0], - [0, 1, 1], - [0, 0, 0]], dtype=np.uint8) - hit3 = np.array([[0, 0, 1], - [1, 1, 0], - [0, 0, 0]], dtype=np.uint8) - hit4 = np.array([[0, 0, 0], - [1, 1, 0], - [0, 0, 1]], dtype=np.uint8) - hit5 = np.array([[0, 1, 0], - [0, 1, 0], - [1, 0, 0]], dtype=np.uint8) - hit6 = np.array([[0, 1, 0], - [0, 1, 0], - [0, 0, 1]], dtype=np.uint8) - hit7 = np.array([[1, 0, 0], - [0, 1, 0], - [0, 1, 0]], dtype=np.uint8) - hit8 = np.array([[0, 0, 1], - [0, 1, 0], - [0, 1, 0]], dtype=np.uint8) + hit1 = np.array([[0, 0, 0], [0, 1, 1], [1, 0, 0]], dtype=np.uint8) + hit2 = np.array([[1, 0, 0], [0, 1, 1], [0, 0, 0]], dtype=np.uint8) + hit3 = np.array([[0, 0, 1], [1, 1, 0], [0, 0, 0]], dtype=np.uint8) + hit4 = np.array([[0, 0, 0], [1, 1, 0], [0, 0, 1]], dtype=np.uint8) + hit5 = np.array([[0, 1, 0], [0, 1, 0], [1, 0, 0]], dtype=np.uint8) + hit6 = np.array([[0, 1, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8) + hit7 = np.array([[1, 0, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8) + hit8 = np.array([[0, 0, 1], [0, 1, 0], [0, 1, 0]], dtype=np.uint8) mid_list = [hit1, hit2, hit3, hit4, hit5, hit6, hit7, hit8] - hit9 = np.array([[0, 0, 1], - [0, 1, 0], - [1, 0, 0]], dtype=np.uint8) - hit10 = np.array([[1, 0, 0], - [0, 1, 0], - [0, 0, 1]], dtype=np.uint8) - + hit9 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8) + hit10 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8) + diag_list = [hit9, hit10] - hit11 = np.array([[0, 1, 0], - [0, 1, 0], - [0, 1, 0]], dtype=np.uint8) - hit12 = np.array([[0, 0, 0], - [1, 1, 1], - [0, 0, 0]], dtype=np.uint8) - + hit11 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8) + hit12 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8) + adj_list = [hit11, hit12] - + skel_image = check_bin(skeleton).astype(int) # print("Converting image to binary array") - + diag_points = np.zeros(skel_image.shape) mid_points = np.zeros(skel_image.shape) adj_points = np.zeros(skel_image.shape) @@ -977,12 +1088,12 @@ def diag(skeleton): target = hit.sum() curr = ndimage.convolve(skel_image, hit, mode="constant") diag_points = np.logical_or(diag_points, np.where(curr == target, 1, 0)) - + for hit in mid_list: target = hit.sum() curr = ndimage.convolve(skel_image, hit, mode="constant") mid_points = np.logical_or(mid_points, np.where(curr == target, 1, 0)) - + for hit in adj_list: target = hit.sum() curr = ndimage.convolve(skel_image, hit, mode="constant") @@ -1002,19 +1113,45 @@ def diag(skeleton): # use SciPy's ndimage module to determine the coordinates/pixel corresponding to the center of mass of each # branchpoint - diag_points = ndimage.center_of_mass(skel_image, labels=labels, index=range(1, num_labels + 1)) - mid_points = ndimage.center_of_mass(skel_image, labels=labels2, index=range(1, num_labels2 + 1)) - adj_points = ndimage.center_of_mass(skel_image, labels=labels3, index=range(1, num_labels3 + 1)) + diag_points = ndimage.center_of_mass( + skel_image, labels=labels, index=range(1, num_labels + 1) + ) + mid_points = ndimage.center_of_mass( + skel_image, labels=labels2, index=range(1, num_labels2 + 1) + ) + adj_points = ndimage.center_of_mass( + skel_image, labels=labels3, index=range(1, num_labels3 + 1) + ) - diag_points = np.array([value for value in diag_points if not np.isnan(value[0]) or not np.isnan(value[1])], dtype=int) - mid_points = np.array([value for value in mid_points if not np.isnan(value[0]) or not np.isnan(value[1])], dtype=int) - adj_points = np.array([value for value in adj_points if not np.isnan(value[0]) or not np.isnan(value[1])], - dtype=int) + diag_points = np.array( + [ + value + for value in diag_points + if not np.isnan(value[0]) or not np.isnan(value[1]) + ], + dtype=int, + ) + mid_points = np.array( + [ + value + for value in mid_points + if not np.isnan(value[0]) or not np.isnan(value[1]) + ], + dtype=int, + ) + adj_points = np.array( + [ + value + for value in adj_points + if not np.isnan(value[0]) or not np.isnan(value[1]) + ], + dtype=int, + ) num_diag_points = len(diag_points) num_mid_points = len(mid_points) num_adj_points = len(adj_points) - + return num_diag_points, num_mid_points, num_adj_points @@ -1044,7 +1181,7 @@ def taubin_curv(coords, resolution): If the radius is infinite, it will return 0. """ - + warnings.filterwarnings("ignore") # suppress RuntimeWarnings from dividing by zero xy = np.array(coords) x = xy[:, 0] - np.mean(xy[:, 0]) # norming points by x avg @@ -1052,16 +1189,18 @@ def taubin_curv(coords, resolution): # centroid = [np.mean(xy[:, 0]), np.mean(xy[:, 1])] z = x * x + y * y zmean = np.mean(z) - z0 = ((z - zmean) / (2. * np.sqrt(zmean))) # changed from using old_div to Python 3 native division + z0 = (z - zmean) / ( + 2.0 * np.sqrt(zmean) + ) # changed from using old_div to Python 3 native division zxy = np.array([z0, x, y]).T u, s, v = np.linalg.svd(zxy, full_matrices=False) # v = v.transpose() a = v[:, 2] - a[0] = (a[0]) / (2. * np.sqrt(zmean)) - a = np.concatenate([a, [(-1. * zmean * a[0])]], axis=0) + a[0] = (a[0]) / (2.0 * np.sqrt(zmean)) + a = np.concatenate([a, [(-1.0 * zmean * a[0])]], axis=0) # a, b = (-1 * a[1:3]) / a[0] / 2 + centroid r = np.sqrt(a[1] * a[1] + a[2] * a[2] - 4 * a[0] * a[3]) / abs(a[0]) / 2 - + if np.isfinite(r): curv = 1 / (r / resolution) if curv >= 0.00001: @@ -1092,7 +1231,7 @@ def subset_gen(pixel_length, window_size_px, label): Nested list of coordinates for the window of measurement in the input curve/line. """ - + # TODO: Add warning that under 10pixels will yield problems subset_start = 0 if window_size_px >= 10: @@ -1112,108 +1251,101 @@ def within_element_func(output_path, name, element, taubin_df): # for within hair distribution label_name = str(element.label) element_df = pd.DataFrame(taubin_df) - element_df.columns = ['curv'] - element_df['label'] = label_name - + element_df.columns = ["curv"] + element_df["label"] = label_name + output_path = make_subdirectory(output_path, append_name="WithinElement") - with pathlib.Path(output_path).joinpath("WithinElement_" + name + "_Label-" + label_name + ".csv") as save_path: + with pathlib.Path(output_path).joinpath( + "WithinElement_" + name + "_Label-" + label_name + ".csv" + ) as save_path: element_df.to_csv(save_path) - + return True + @blockPrint def define_structure(structure: str): if structure == "mid": - hit1 = np.array([[0, 0, 0], - [0, 1, 1], - [1, 0, 0]], dtype=np.uint8) - hit2 = np.array([[1, 0, 0], - [0, 1, 1], - [0, 0, 0]], dtype=np.uint8) - hit3 = np.array([[0, 0, 1], - [1, 1, 0], - [0, 0, 0]], dtype=np.uint8) - hit4 = np.array([[0, 0, 0], - [1, 1, 0], - [0, 0, 1]], dtype=np.uint8) - hit5 = np.array([[0, 1, 0], - [0, 1, 0], - [1, 0, 0]], dtype=np.uint8) - hit6 = np.array([[0, 1, 0], - [0, 1, 0], - [0, 0, 1]], dtype=np.uint8) - hit7 = np.array([[1, 0, 0], - [0, 1, 0], - [0, 1, 0]], dtype=np.uint8) - hit8 = np.array([[0, 0, 1], - [0, 1, 0], - [0, 1, 0]], dtype=np.uint8) - + hit1 = np.array([[0, 0, 0], [0, 1, 1], [1, 0, 0]], dtype=np.uint8) + hit2 = np.array([[1, 0, 0], [0, 1, 1], [0, 0, 0]], dtype=np.uint8) + hit3 = np.array([[0, 0, 1], [1, 1, 0], [0, 0, 0]], dtype=np.uint8) + hit4 = np.array([[0, 0, 0], [1, 1, 0], [0, 0, 1]], dtype=np.uint8) + hit5 = np.array([[0, 1, 0], [0, 1, 0], [1, 0, 0]], dtype=np.uint8) + hit6 = np.array([[0, 1, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8) + hit7 = np.array([[1, 0, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8) + hit8 = np.array([[0, 0, 1], [0, 1, 0], [0, 1, 0]], dtype=np.uint8) + mid_list = [hit1, hit2, hit3, hit4, hit5, hit6, hit7, hit8] return mid_list elif structure == "diag": - hit1 = np.array([[0, 0, 1], - [0, 1, 0], - [1, 0, 0]], dtype=np.uint8) - hit2 = np.array([[1, 0, 0], - [0, 1, 0], - [0, 0, 1]], dtype=np.uint8) + hit1 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8) + hit2 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8) diag_list = [hit1, hit2] return diag_list else: raise TypeError( - "Structure input for find_structure() is invalid, choose from 'mid', or 'diag' and input as str") + "Structure input for find_structure() is invalid, choose from 'mid', or 'diag' and input as str" + ) + @blockPrint def find_structure(skeleton, structure: str): skel_image = check_bin(skeleton).astype(int) - + # print(skel_image.shape) - + # creating empty array for hit and miss algorithm hit_points = np.zeros(skel_image.shape) # defining the structure used in hit-and-miss algorithm hit_list = define_structure(structure) - + for hit in hit_list: target = hit.sum() curr = ndimage.convolve(skel_image, hit, mode="constant") hit_points = np.logical_or(hit_points, np.where(curr == target, 1, 0)) - + # Ensuring target image is binary hit_points_image = np.where(hit_points, 1, 0) - + # use SciPy's ndimage module for locating and determining coordinates of each branch-point labels, num_labels = ndimage.label(hit_points_image) - + return labels, num_labels + @blockPrint def pixel_length_correction(element): - + num_total_points = element.area - + skeleton = element.image - - diag_points, num_diag_points = find_structure(skeleton, 'diag') + + diag_points, num_diag_points = find_structure(skeleton, "diag") # print(num_diag_points) - - mid_points, num_mid_points = find_structure(skeleton, 'mid') + + mid_points, num_mid_points = find_structure(skeleton, "mid") # print(num_mid_points) - + num_adj_points = num_total_points - num_diag_points - num_mid_points # print(num_adj_points) - corr_element_pixel_length = num_adj_points + (num_diag_points * np.sqrt(2)) + (num_mid_points * np.sqrt(1.25)) + corr_element_pixel_length = ( + num_adj_points + + (num_diag_points * np.sqrt(2)) + + (num_mid_points * np.sqrt(1.25)) + ) return corr_element_pixel_length + # # @timing @blockPrint -def analyze_each_curv(element, window_size_px, resolution, output_path, name, within_element): +def analyze_each_curv( + element, window_size_px, resolution, output_path, name, within_element +): """Calculates curvature for each labeled element in an array. Parameters @@ -1231,70 +1363,76 @@ def analyze_each_curv(element, window_size_px, resolution, output_path, name, wi A list of the mean and median curvatures and the element length. """ - + element_label = np.array(element.coords) - + # Due to the differences in distance for vertically and horizontally vs. diagonally adjacent pixels, a correction # is applied of a factor of 1.12. See literature below: # Smit AL, Sprangers JFCM, Sablik PW, Groenwold J. Automated measurement of root length with a three-dimensional # high-resolution scanner and image analysis. Plant Soil. 1994 Jan 1;158(1):145–9. # Smit AL, Bengough AG, Engels C, van Noordwijk M, Pellerin S, van de Geijn SC. Root Methods: A Handbook. # Springer Science & Business Media; 2013. 594 p.323 - + element_pixel_length = int(element.area) # length of element in pixels corr_element_pixel_length = pixel_length_correction(element) length_mm = float(corr_element_pixel_length / resolution) - + if not window_size_px is None: window_size_px = int(window_size_px) - - subset_loop = (subset_gen(element_pixel_length, window_size_px, element_label)) # generates subset loop - + + subset_loop = subset_gen( + element_pixel_length, window_size_px, element_label + ) # generates subset loop + # Safe generator expression in case of errors - curv = [taubin_curv(element_coords, resolution) for element_coords in subset_loop] - - taubin_df = pd.Series(curv).astype('float') + curv = [ + taubin_curv(element_coords, resolution) for element_coords in subset_loop + ] + + taubin_df = pd.Series(curv).astype("float") # print("\nCurv dataframe is:") # print(taubin_df) # print(type(taubin_df)) # print("\nCurv df min is:{}".format(taubin_df.min())) # print("\nCurv df max is:{}".format(taubin_df.max())) - + # print("\nTrimming outliers...") - taubin_df2 = taubin_df[taubin_df.between(taubin_df.quantile(.01), taubin_df.quantile(.99))] # without outliers - + taubin_df2 = taubin_df[ + taubin_df.between(taubin_df.quantile(0.01), taubin_df.quantile(0.99)) + ] # without outliers + # print("\nAfter trimming outliers...") # print("\nCurv dataframe is:") # print(taubin_df2) # print(type(taubin_df2)) # print("\nCurv df min is:{}".format(taubin_df2.min())) # print("\nCurv df max is:{}".format(taubin_df2.max())) - + curv_mean = taubin_df2.mean() # print("\nCurv mean is:{}".format(curv_mean)) - + curv_median = taubin_df2.median() # print("\nCurv median is:{}".format(curv_median)) - + within_element_df = [curv_mean, curv_median, length_mm] # print("\nThe curvature summary stats for this element are:") # print(within_element_df) - + if within_element: within_element_func(output_path, name, element, taubin_df) - + if within_element_df is not None or np.nan: return within_element_df else: pass - + elif window_size_px is None: curv = taubin_curv(element.coords, resolution) - - within_element_df = pd.DataFrame({'curv': [curv], 'length': [length_mm]}) - + + within_element_df = pd.DataFrame({"curv": [curv], "length": [length_mm]}) + if within_element_df is not None or np.nan: return within_element_df else: @@ -1325,16 +1463,18 @@ def imread(input_file, use_skimage=False): img_float = skimage.io.imread(input_file, as_gray=True) img = skimage.img_as_ubyte(img_float) except ValueError: - img = np.array(Image.open(str(input_path)).convert('L')) + img = np.array(Image.open(str(input_path)).convert("L")) else: - img = np.array(Image.open(str(input_path)).convert('L')) + img = np.array(Image.open(str(input_path)).convert("L")) im_name = input_path.stem return img, im_name # # @timing @blockPrint -def analyze_all_curv(img, name, output_path, resolution, window_size, window_unit, test, within_element): +def analyze_all_curv( + img, name, output_path, resolution, window_size, window_unit, test, within_element +): """Analyzes curvature for all elements in an image. Parameters @@ -1360,117 +1500,174 @@ def analyze_all_curv(img, name, output_path, resolution, window_size, window_uni Pandas DataFrame with summary data for all elements in image. """ - if type(img) != 'np.ndarray': + if type(img) != "np.ndarray": print(type(img)) img = np.array(img) else: print(type(img)) - + # print("Analyzing {}".format(name)) - + img = check_bin(img) - - label_image, num_elements = skimage.measure.label(img.astype(int), connectivity=2, return_num=True) + + label_image, num_elements = skimage.measure.label( + img.astype(int), connectivity=2, return_num=True + ) # print("\n There are {} elements in the image".format(num_elements)) - + props = skimage.measure.regionprops(label_image) - + if not isinstance(window_size, list): # print("Window size passed from args is:\n") # print(type(window_size)) # print(window_size) # print("First item is:") # print(window_size[0]) - + window_size = [window_size] - + # window_size = [float(i) for i in window_size] - + name = name - - im_sumdf = [window_iter(props, name, i, window_unit, resolution, output_path, test, within_element) for i in window_size] - + + im_sumdf = [ + window_iter( + props, name, i, window_unit, resolution, output_path, test, within_element + ) + for i in window_size + ] + im_sumdf = pd.concat(im_sumdf) - + return im_sumdf + @blockPrint -def window_iter(props, name, window_size, window_unit, resolution, output_path, test, within_element): - +def window_iter( + props, name, window_size, window_unit, resolution, output_path, test, within_element +): + tempdf = [] - + if not window_size is None: if not window_unit == "px": window_size_px = int(window_size * resolution) else: window_size_px = int(window_size) window_size = int(window_size) - + # print("\nWindow size for analysis is {} {}".format(window_size_px, window_unit)) # print("Analysis of curvature for each element begins...") - + name = str(name + "_WindowSize-" + str(window_size) + str(window_unit)) # print(name) # print(window_size) - - tempdf = [analyze_each_curv(hair, window_size_px, resolution, output_path, name, within_element) for hair in props if hair.area > window_size] - - within_im_curvdf = pd.DataFrame(tempdf, columns=['curv_mean', 'curv_median', 'length']) - - within_im_curvdf2 = pd.DataFrame(within_im_curvdf, columns=['curv_mean', 'curv_median', 'length']).dropna() - + + tempdf = [ + analyze_each_curv( + hair, window_size_px, resolution, output_path, name, within_element + ) + for hair in props + if hair.area > window_size + ] + + within_im_curvdf = pd.DataFrame( + tempdf, columns=["curv_mean", "curv_median", "length"] + ) + + within_im_curvdf2 = pd.DataFrame( + within_im_curvdf, columns=["curv_mean", "curv_median", "length"] + ).dropna() + output_path = make_subdirectory(output_path, append_name="analysis") - with pathlib.Path(output_path).joinpath("ImageSum_" + name + ".csv") as save_path: + with pathlib.Path(output_path).joinpath( + "ImageSum_" + name + ".csv" + ) as save_path: within_im_curvdf2.to_csv(save_path) - - curv_mean_im_mean = within_im_curvdf2['curv_mean'].mean() - curv_mean_im_median = within_im_curvdf2['curv_mean'].median() - curv_median_im_mean = within_im_curvdf2['curv_median'].mean() - curv_median_im_median = within_im_curvdf2['curv_median'].median() - length_mean = within_im_curvdf2['length'].mean() - length_median = within_im_curvdf2['length'].median() + + curv_mean_im_mean = within_im_curvdf2["curv_mean"].mean() + curv_mean_im_median = within_im_curvdf2["curv_mean"].median() + curv_median_im_mean = within_im_curvdf2["curv_median"].mean() + curv_median_im_median = within_im_curvdf2["curv_median"].median() + length_mean = within_im_curvdf2["length"].mean() + length_median = within_im_curvdf2["length"].median() hair_count = len(within_im_curvdf2.index) - + im_sumdf = pd.DataFrame( - {"ID": [name], "curv_mean_mean": [curv_mean_im_mean], "curv_mean_median": [curv_mean_im_median], "curv_median_mean": [curv_median_im_mean], "curv_median_median": [curv_median_im_median], "length_mean": [length_mean],"length_median": [length_median], "hair_count": [hair_count]}) + { + "ID": [name], + "curv_mean_mean": [curv_mean_im_mean], + "curv_mean_median": [curv_mean_im_median], + "curv_median_mean": [curv_median_im_mean], + "curv_median_median": [curv_median_im_median], + "length_mean": [length_mean], + "length_median": [length_median], + "hair_count": [hair_count], + } + ) if test: return within_im_curvdf2 else: return im_sumdf - + elif window_size is None: window_size_px = None within_element = None minsize = 0.5 * resolution - tempdf = [analyze_each_curv(hair, window_size_px, resolution, output_path, name, within_element) for hair in - props if hair.area > minsize] + tempdf = [ + analyze_each_curv( + hair, window_size_px, resolution, output_path, name, within_element + ) + for hair in props + if hair.area > minsize + ] within_im_curvdf = pd.concat(tempdf) within_im_curvdf2 = within_im_curvdf.dropna() output_path = make_subdirectory(output_path, append_name="analysis") - with pathlib.Path(output_path).joinpath("ImageSum_" + name + ".csv") as save_path: + with pathlib.Path(output_path).joinpath( + "ImageSum_" + name + ".csv" + ) as save_path: within_im_curvdf2.to_csv(save_path) - im_mean = within_im_curvdf2['curv'].mean() - im_median = within_im_curvdf2['curv'].median() - length_mean = within_im_curvdf2['length'].mean() - length_median = within_im_curvdf2['length'].median() + im_mean = within_im_curvdf2["curv"].mean() + im_median = within_im_curvdf2["curv"].median() + length_mean = within_im_curvdf2["length"].mean() + length_median = within_im_curvdf2["length"].median() hair_count = len(within_im_curvdf2.index) - im_sumdf = pd.DataFrame({'ID': name, 'curv_mean': [im_mean], 'curv_median': [im_median], 'length_mean': [length_mean], 'length_median': [length_median], 'hair_count': [hair_count]}) - + im_sumdf = pd.DataFrame( + { + "ID": name, + "curv_mean": [im_mean], + "curv_median": [im_median], + "length_mean": [length_mean], + "length_median": [length_median], + "hair_count": [hair_count], + } + ) + if test: return within_im_curvdf2 else: return im_sumdf - + # # @timing @blockPrint -def curvature_seq(input_file, output_path, resolution, window_size, window_unit, save_img, test, within_element): +def curvature_seq( + input_file, + output_path, + resolution, + window_size, + window_unit, + save_img, + test, + within_element, +): """Sequence of functions to be executed for calculating curvature in fibermorph. Parameters @@ -1496,39 +1693,63 @@ def curvature_seq(input_file, output_path, resolution, window_size, window_unit, Pandas DataFrame with curvature summary data for all images. """ - - with tqdm(total=6, desc="curvature analysis sequence", unit="steps", position=1, leave=None) as pbar: + + with tqdm( + total=6, + desc="curvature analysis sequence", + unit="steps", + position=1, + leave=None, + ) as pbar: for i in [input_file]: - + # filter filter_img, im_name = filter_curv(input_file, output_path, save_img) pbar.update(1) - + # binarize binary_img = binarize_curv(filter_img, im_name, output_path, save_img) pbar.update(1) - + # remove particles - clean_im = remove_particles(binary_img, output_path, im_name, minpixel=int(resolution/2), prune=False, save_img=save_img) + clean_im = remove_particles( + binary_img, + output_path, + im_name, + minpixel=int(resolution / 2), + prune=False, + save_img=save_img, + ) pbar.update(1) - + # skeletonize skeleton_im = skeletonize(clean_im, im_name, output_path, save_img) pbar.update(1) - + # prune pruned_im = prune(skeleton_im, im_name, output_path, save_img) pbar.update(1) - + # analyze - im_df = analyze_all_curv(pruned_im, im_name, output_path, resolution, window_size, window_unit, test, within_element) + im_df = analyze_all_curv( + pruned_im, + im_name, + output_path, + resolution, + window_size, + window_unit, + test, + within_element, + ) pbar.update(1) - + return im_df + @contextlib.contextmanager def tqdm_joblib(tqdm_object): """Context manager to patch joblib to report into tqdm progress bar given as argument""" + class TqdmBatchCompletionCallback(joblib.parallel.BatchCompletionCallBack): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) @@ -1548,6 +1769,7 @@ def __call__(self, *args, **kwargs): # Main modules (organized in order of operations: raw2gray, curvature, section) + def raw2gray(input_directory, output_location, file_type, jobs): """Convert raw files to grayscale tiff files. @@ -1569,33 +1791,48 @@ def raw2gray(input_directory, output_location, file_type, jobs): """ total_start = timer() - - file_list = [p for p in pathlib.Path(input_directory).rglob('*') if p.suffix in file_type] + + file_list = [ + p for p in pathlib.Path(input_directory).rglob("*") if p.suffix in file_type + ] list.sort(file_list) # sort the files # print(file_list) # printed the sorted files - + # print("There are {} files to convert".format(len(file_list))) # print("\n\n") - + # print("Converting raw files into grayscale tiff files...\n") - + tiff_directory = make_subdirectory(output_location, append_name="tiff") - - with tqdm_joblib(tqdm(desc="raw2gray", total=len(file_list), unit="files", miniters=1)) as progress_bar: + + with tqdm_joblib( + tqdm(desc="raw2gray", total=len(file_list), unit="files", miniters=1) + ) as progress_bar: progress_bar.monitor_interval = 2 - Parallel(n_jobs=jobs, verbose=0)(delayed(raw_to_gray)(f, tiff_directory) for f in file_list) - + Parallel(n_jobs=jobs, verbose=0)( + delayed(raw_to_gray)(f, tiff_directory) for f in file_list + ) + # End the timer and then print out the how long it took total_end = timer() - total_time = (total_end - total_start) - + total_time = total_end - total_start + # This will print out the minutes to the console, with 2 decimal places. tqdm.write("\n\nEntire analysis took: {}\n\n".format(convert(total_time))) - + return True -def curvature(input_directory, main_output_path, jobs, resolution, window_size, window_unit, save_img, within_element): +def curvature( + input_directory, + main_output_path, + jobs, + resolution, + window_size, + window_unit, + save_img, + within_element, +): """Takes directory of grayscale tiff images and analyzes curvature for each curve/line in the image. Parameters @@ -1623,55 +1860,70 @@ def curvature(input_directory, main_output_path, jobs, resolution, window_size, True. """ - + total_start = timer() - + # create an output directory for the analyses jetzt = datetime.now() timestamp = jetzt.strftime("%b%d_%H%M_") dir_name = str(timestamp + "fibermorph_curvature") output_path = make_subdirectory(main_output_path, append_name=dir_name) - + file_list = list_images(input_directory) - + # List expression for curv df per image # im_df = [curvature_seq(input_file, filtered_dir, binary_dir, pruned_dir, clean_dir, skeleton_dir, analysis_dir, # resolution, window_size_mm, save_img) for input_file in file_list] - + # This is the old parallel jobs function - with tqdm_joblib(tqdm(desc="curvature", total=len(file_list), unit="files", miniters=1)) as progress_bar: + with tqdm_joblib( + tqdm(desc="curvature", total=len(file_list), unit="files", miniters=1) + ) as progress_bar: progress_bar.monitor_interval = 2 - im_df = (Parallel(n_jobs=jobs, verbose=0)( - delayed(curvature_seq)(input_file, output_path, - resolution, window_size, window_unit, save_img, test=False, within_element=within_element) for - input_file in file_list)) - + im_df = Parallel(n_jobs=jobs, verbose=0)( + delayed(curvature_seq)( + input_file, + output_path, + resolution, + window_size, + window_unit, + save_img, + test=False, + within_element=within_element, + ) + for input_file in file_list + ) + summary_df = pd.concat(im_df) - + # print("This is the summary dataframe for the current sample") # print(summary_df) - + # print("You've got data...") # print(summary_df) - + jetzt = datetime.now() timestamp = jetzt.strftime("_%b%d_%H%M") - - with pathlib.Path(output_path).joinpath("curvature_summary_data{}.csv".format(timestamp)) as output_path: + + with pathlib.Path(output_path).joinpath( + "curvature_summary_data{}.csv".format(timestamp) + ) as output_path: summary_df.to_csv(output_path) # print(output_path) - + # End the timer and then print out the how long it took total_end = timer() - total_time = (total_end - total_start) - + total_time = total_end - total_start + # This will print out the minutes to the console, with 2 decimal places. tqdm.write("\n\nComplete analysis took: {}\n\n".format(convert(total_time))) - + return True -def section(input_directory, main_output_path, jobs, resolution, minsize, maxsize, save_img): +def section( + input_directory, main_output_path, jobs, resolution, minsize, maxsize, save_img +): """Takes directory of grayscale images (and locates central section where necessary) and analyzes cross-sectional properties for each image. @@ -1696,50 +1948,54 @@ def section(input_directory, main_output_path, jobs, resolution, minsize, maxsiz True. """ - + total_start = timer() - + # Change to the folder for reading images file_list = list_images(input_directory) - + # Shows what is in the file_list. The backslash n prints a new line # print("There are {} files in the cropped_list:".format(len(file_list))) # print(file_list, "\n\n") - + # Creating subdirectories for cropped images - + jetzt = datetime.now() timestamp = jetzt.strftime("%b%d_%H%M_") dir_name = str(timestamp + "fibermorph_section") output_path = make_subdirectory(main_output_path, append_name=dir_name) - + # section_df = [analyze_section(f, output_im_path, minsize, maxsize, resolution) for f in file_list] - - with tqdm_joblib(tqdm(desc="section", total=len(file_list), unit="files", miniters=1)) as progress_bar: + + with tqdm_joblib( + tqdm(desc="section", total=len(file_list), unit="files", miniters=1) + ) as progress_bar: progress_bar.monitor_interval = 2 - section_df = (Parallel(n_jobs=jobs, verbose=0)( - delayed(section_seq)(f, output_path, resolution, minsize, maxsize, save_img) for f in file_list)) - + section_df = Parallel(n_jobs=jobs, verbose=0)( + delayed(section_seq)(f, output_path, resolution, minsize, maxsize, save_img) + for f in file_list + ) + section_df = pd.concat(section_df).dropna() - section_df.set_index('ID', inplace=True) - - with pathlib.Path(output_path).joinpath("summary_section_data.csv") as df_output_path: + section_df.set_index("ID", inplace=True) + + with pathlib.Path(output_path).joinpath( + "summary_section_data.csv" + ) as df_output_path: section_df.to_csv(df_output_path) - + # End the timer and then print out the how long it took total_end = timer() total_time = int(total_end - total_start) - + tqdm.write("\n\nComplete analysis took: {}\n\n".format(convert(total_time))) - + return True -#%% + def main(): args = parse_args() - - # Run fibermorph - + if args.demo_real_curv is True: demo.real_curv(args.output_directory) sys.exit(0) @@ -1752,27 +2008,38 @@ def main(): # elif args.demo_dummy_section is True: # demo.dummy_section(args.output_directory, args.repeats) # sys.exit(0) - + # Check for output directory and create it if it doesn't exist output_dir = make_subdirectory(args.output_directory) - + if args.raw2gray is True: - raw2gray( - args.input_directory, output_dir, args.file_extension, args.jobs) + raw2gray(args.input_directory, output_dir, args.file_extension, args.jobs) elif args.curvature is True: curvature( - args.input_directory, output_dir, args.jobs, - args.resolution_mm, args.window_size, args.window_unit, args.save_image, args.within_element) + args.input_directory, + output_dir, + args.jobs, + args.resolution_mm, + args.window_size, + args.window_unit, + args.save_image, + args.within_element, + ) elif args.section is True: section( - args.input_directory, output_dir, args.jobs, - args.resolution_mu, args.minsize, args.maxsize, args.save_image) + args.input_directory, + output_dir, + args.jobs, + args.resolution_mu, + args.minsize, + args.maxsize, + args.save_image, + ) else: sys.exit("Error. Tim didn't exhaust all module options") - + sys.exit(0) if __name__ == "__main__": main() - diff --git a/fibermorph/test/test_fibermorph.py b/fibermorph/test/test_fibermorph.py index 66e7fa4..b923ce2 100644 --- a/fibermorph/test/test_fibermorph.py +++ b/fibermorph/test/test_fibermorph.py @@ -1,48 +1,27 @@ -# %% Import import os import shutil import sys import pathlib import numpy as np import pytest -import gc - - -from skimage import io - -import argparse -import datetime import os import pathlib import shutil import sys -import timeit -import warnings -from datetime import datetime from functools import wraps from timeit import default_timer as timer +import pandas as pd +from time import sleep import pandas as pd import rawpy import scipy import skimage -import contextlib -import joblib import skimage.exposure import skimage.measure import skimage.morphology -from PIL import Image -from joblib import Parallel, delayed -from matplotlib import pyplot as plt -from scipy import ndimage -from scipy.spatial import distance as dist -from skimage import filters -from skimage.filters import threshold_minimum -from skimage.segmentation import clear_border -from skimage.util import invert from tqdm import tqdm -# %% sys.path.append(os.path.dirname(os.path.abspath(__file__))) from fibermorph import fibermorph from fibermorph import demo @@ -52,9 +31,7 @@ def teardown_module(function): - teardown_files = [ - "empty_file1.txt", - "test1/empty_file1.txt"] + teardown_files = ["empty_file1.txt", "test1/empty_file1.txt"] if len(teardown_files) > 0: for file_name in teardown_files: if os.path.exists(os.path.join(dir, file_name)): @@ -65,16 +42,11 @@ def test_pass(): assert 1 + 1 == 2 -# def test_fail(): -# assert 2 + 2 == 5 - - def test_make_subdirectory(tmp_path): d = tmp_path / "test" d.mkdir() dir1 = fibermorph.make_subdirectory(tmp_path, "test") assert d == dir1 - # assert 0 == 1 def test_convert(): @@ -96,90 +68,121 @@ def test_analyze_all_curv(tmp_path): def test_length_measurement(): - ref_df = pd.read_csv(pathlib.Path("fibermorph/test_data/SimArcData/Oct06_1855_32_017780_arc_data.csv"), header=0, - index_col=0) - + ref_df = pd.read_csv( + pathlib.Path( + "fibermorph/test_data/SimArcData/Oct06_1855_32_017780_arc_data.csv" + ), + header=0, + index_col=0, + ) + ref_length = ref_df["ref_length"][0] - - img, name = fibermorph.imread(pathlib.Path("fibermorph/test_data/SimArcData/Oct06_1855_32_017780_arc_data.tiff")) - + + img, name = fibermorph.imread( + pathlib.Path( + "fibermorph/test_data/SimArcData/Oct06_1855_32_017780_arc_data.tiff" + ) + ) + img = fibermorph.check_bin(img) - + skel_im = skimage.morphology.thin(img) print(skel_im.shape) - + prun_im = fibermorph.prune(skel_im, name, pathlib.Path("./"), save_img=False) print(prun_im.shape) - - label_image, num_elements = skimage.measure.label(prun_im.astype(int), connectivity=2, return_num=True) + + label_image, num_elements = skimage.measure.label( + prun_im.astype(int), connectivity=2, return_num=True + ) print("\n There are {} elements in the image".format(num_elements)) - + # label the image and extract the first element/object with [0] element = skimage.measure.regionprops(label_image)[0] - + # retrieve coordinates of each pixel with regionprops element_label = np.array(element.coords) print(len(element_label)) print(element.area) assert len(element_label) == element.area - + corr_px_length = fibermorph.pixel_length_correction(element) print("Reference length is: {}".format(ref_length)) print("Uncorrected length is: {}".format(element.area)) - print("Corrected length is: {}". format(corr_px_length)) + print("Corrected length is: {}".format(corr_px_length)) def test_length_measurement(): - ref_df = pd.read_csv(pathlib.Path("fibermorph/test_data/SimArcData/Oct06_1855_32_017780_arc_data.csv"), header=0, - index_col=0) - + ref_df = pd.read_csv( + pathlib.Path( + "fibermorph/test_data/SimArcData/Oct06_1855_32_017780_arc_data.csv" + ), + header=0, + index_col=0, + ) + ref_length = ref_df["ref_length"][0] - - img, name = fibermorph.imread(pathlib.Path("fibermorph/test_data/SimArcData/Oct06_1855_32_017780_arc_data.tiff")) - + + img, name = fibermorph.imread( + pathlib.Path( + "fibermorph/test_data/SimArcData/Oct06_1855_32_017780_arc_data.tiff" + ) + ) + img = fibermorph.check_bin(img) - + skel_im = skimage.morphology.thin(img) print(skel_im.shape) - + prun_im = fibermorph.prune(skel_im, name, pathlib.Path("./"), save_img=False) print(prun_im.shape) - - label_image, num_elements = skimage.measure.label(prun_im.astype(int), connectivity=2, return_num=True) + + label_image, num_elements = skimage.measure.label( + prun_im.astype(int), connectivity=2, return_num=True + ) print("\n There are {} elements in the image".format(num_elements)) - + # label the image and extract the first element/object with [0] element = skimage.measure.regionprops(label_image)[0] - + # retrieve coordinates of each pixel with regionprops element_label = np.array(element.coords) print(len(element_label)) print(element.area) assert len(element_label) == element.area - + corr_px_length = fibermorph.pixel_length_correction(element) - + print("Reference length is: {}".format(ref_length)) print("Uncorrected length is: {}".format(element.area)) print("Corrected length is: {}".format(corr_px_length)) + def test_sim_ellipse(): im_width_px = 1040 im_height_px = 780 min_diam_um = 40 max_diam_um = 80 - + px_per_um = 4.25 angle_deg = 30 # create output directory if not exists - output_directory = 'test_sim_ellipse' + output_directory = "test_sim_ellipse" if not os.path.exists(output_directory): os.makedirs(output_directory) - + try: - df = demo.sim_ellipse(output_directory, im_width_px, im_height_px, min_diam_um, max_diam_um, px_per_um, angle_deg) + df = demo.sim_ellipse( + output_directory, + im_width_px, + im_height_px, + min_diam_um, + max_diam_um, + px_per_um, + angle_deg, + ) pass finally: @@ -187,43 +190,55 @@ def test_sim_ellipse(): if os.path.exists(output_directory): shutil.rmtree(output_directory) -#%% + def section_props(props, im_name, resolution, minpixel, maxpixel, im_center): - + props_df = [ - [region.label, region.centroid, scipy.spatial.distance.euclidean(im_center, region.centroid)] - for region - in props if minpixel <= region.area <= maxpixel] - props_df = pd.DataFrame(props_df, columns=['label', 'centroid', 'distance']) - - section_id = props_df['distance'].astype(float).idxmin() + [ + region.label, + region.centroid, + scipy.spatial.distance.euclidean(im_center, region.centroid), + ] + for region in props + if minpixel <= region.area <= maxpixel + ] + props_df = pd.DataFrame(props_df, columns=["label", "centroid", "distance"]) + + section_id = props_df["distance"].astype(float).idxmin() # print(section_id) - + section = props[section_id] - + area_mu = section.filled_area / np.square(resolution) min_diam = section.minor_axis_length / resolution max_diam = section.major_axis_length / resolution eccentricity = section.eccentricity - + section_data = pd.DataFrame( - {'ID': [im_name], 'area': [area_mu], 'eccentricity': [eccentricity], 'min': [min_diam], - 'max': [max_diam]}) - + { + "ID": [im_name], + "area": [area_mu], + "eccentricity": [eccentricity], + "min": [min_diam], + "max": [max_diam], + } + ) + gray_im = section.intensity_image bin_im = section.filled_image bbox = section.bbox - + return section_data, gray_im, bin_im, bbox -#%% + @pytest.mark.skip(reason="Skipping this test case until we get the data") def test_segment_section(): - - - #input + + # input # input_directory = pathlib.Path("/Users/tinalasisi/Desktop/Nov01_2338_ValidationTest_Section/ValidationData") - input_directory = pathlib.Path("/Users/tinalasisi/Box/01_TPL5158/Box_Dissertation/HairPhenotyping_Methods/data/fibermorph_input/admixed_real_hair/section/AfrEu_SectionImages_RawJPG/AfrEu_SectionImages_GrayTIFF/tiff") + input_directory = pathlib.Path( + "/Users/tinalasisi/Box/01_TPL5158/Box_Dissertation/HairPhenotyping_Methods/data/fibermorph_input/admixed_real_hair/section/AfrEu_SectionImages_RawJPG/AfrEu_SectionImages_GrayTIFF/tiff" + ) file_list = fibermorph.list_images(input_directory) main_output_path = "." output_path = main_output_path @@ -232,19 +247,17 @@ def test_segment_section(): resolution = 4.25 save_img = True jobs = 2 - + input_file = file_list[0] - - # section sequence -#%% - + # section sequence def test_copy_if_exist(): # fibermorph.copy_if_exist() pass + from tqdm import tqdm import pandas as pd import numpy as np diff --git a/poetry.lock b/poetry.lock index 835814c..1e003d6 100644 --- a/poetry.lock +++ b/poetry.lock @@ -11,6 +11,50 @@ files = [ {file = "argparse-1.4.0.tar.gz", hash = "sha256:62b089a55be1d8949cd2bc7e0df0bddb9e028faefc8c32038cc84862aefdd6e4"}, ] +[[package]] +name = "black" +version = "24.2.0" +description = "The uncompromising code formatter." +optional = false +python-versions = ">=3.8" +files = [ + {file = "black-24.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:6981eae48b3b33399c8757036c7f5d48a535b962a7c2310d19361edeef64ce29"}, + {file = "black-24.2.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d533d5e3259720fdbc1b37444491b024003e012c5173f7d06825a77508085430"}, + {file = "black-24.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:61a0391772490ddfb8a693c067df1ef5227257e72b0e4108482b8d41b5aee13f"}, + {file = "black-24.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:992e451b04667116680cb88f63449267c13e1ad134f30087dec8527242e9862a"}, + {file = "black-24.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:163baf4ef40e6897a2a9b83890e59141cc8c2a98f2dda5080dc15c00ee1e62cd"}, + {file = "black-24.2.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e37c99f89929af50ffaf912454b3e3b47fd64109659026b678c091a4cd450fb2"}, + {file = "black-24.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4f9de21bafcba9683853f6c96c2d515e364aee631b178eaa5145fc1c61a3cc92"}, + {file = "black-24.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:9db528bccb9e8e20c08e716b3b09c6bdd64da0dd129b11e160bf082d4642ac23"}, + {file = "black-24.2.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d84f29eb3ee44859052073b7636533ec995bd0f64e2fb43aeceefc70090e752b"}, + {file = "black-24.2.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:1e08fb9a15c914b81dd734ddd7fb10513016e5ce7e6704bdd5e1251ceee51ac9"}, + {file = "black-24.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:810d445ae6069ce64030c78ff6127cd9cd178a9ac3361435708b907d8a04c693"}, + {file = "black-24.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:ba15742a13de85e9b8f3239c8f807723991fbfae24bad92d34a2b12e81904982"}, + {file = "black-24.2.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:7e53a8c630f71db01b28cd9602a1ada68c937cbf2c333e6ed041390d6968faf4"}, + {file = "black-24.2.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:93601c2deb321b4bad8f95df408e3fb3943d85012dddb6121336b8e24a0d1218"}, + {file = "black-24.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a0057f800de6acc4407fe75bb147b0c2b5cbb7c3ed110d3e5999cd01184d53b0"}, + {file = "black-24.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:faf2ee02e6612577ba0181f4347bcbcf591eb122f7841ae5ba233d12c39dcb4d"}, + {file = "black-24.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:057c3dc602eaa6fdc451069bd027a1b2635028b575a6c3acfd63193ced20d9c8"}, + {file = "black-24.2.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:08654d0797e65f2423f850fc8e16a0ce50925f9337fb4a4a176a7aa4026e63f8"}, + {file = "black-24.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ca610d29415ee1a30a3f30fab7a8f4144e9d34c89a235d81292a1edb2b55f540"}, + {file = "black-24.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:4dd76e9468d5536abd40ffbc7a247f83b2324f0c050556d9c371c2b9a9a95e31"}, + {file = "black-24.2.0-py3-none-any.whl", hash = "sha256:e8a6ae970537e67830776488bca52000eaa37fa63b9988e8c487458d9cd5ace6"}, + {file = "black-24.2.0.tar.gz", hash = "sha256:bce4f25c27c3435e4dace4815bcb2008b87e167e3bf4ee47ccdc5ce906eb4894"}, +] + +[package.dependencies] +click = ">=8.0.0" +mypy-extensions = ">=0.4.3" +packaging = ">=22.0" +pathspec = ">=0.9.0" +platformdirs = ">=2" + +[package.extras] +colorama = ["colorama (>=0.4.3)"] +d = ["aiohttp (>=3.7.4)", "aiohttp (>=3.7.4,!=3.9.0)"] +jupyter = ["ipython (>=7.8.0)", "tokenize-rt (>=3.2.0)"] +uvloop = ["uvloop (>=0.15.2)"] + [[package]] name = "certifi" version = "2024.2.2" @@ -121,6 +165,20 @@ files = [ {file = "charset_normalizer-3.3.2-py3-none-any.whl", hash = "sha256:3e4d1f6587322d2788836a99c69062fbb091331ec940e02d12d179c1d53e25fc"}, ] +[[package]] +name = "click" +version = "8.1.7" +description = "Composable command line interface toolkit" +optional = false +python-versions = ">=3.7" +files = [ + {file = "click-8.1.7-py3-none-any.whl", hash = "sha256:ae74fb96c20a0277a1d615f1e4d73c8414f5a98db8b799a7931d1582f3390c28"}, + {file = "click-8.1.7.tar.gz", hash = "sha256:ca9853ad459e787e2192211578cc907e7594e294c7ccc834310722b41b9ca6de"}, +] + +[package.dependencies] +colorama = {version = "*", markers = "platform_system == \"Windows\""} + [[package]] name = "colorama" version = "0.4.6" @@ -533,6 +591,17 @@ docs = ["sphinx"] gmpy = ["gmpy2 (>=2.1.0a4)"] tests = ["pytest (>=4.6)"] +[[package]] +name = "mypy-extensions" +version = "1.0.0" +description = "Type system extensions for programs checked with the mypy type checker." +optional = false +python-versions = ">=3.5" +files = [ + {file = "mypy_extensions-1.0.0-py3-none-any.whl", hash = "sha256:4392f6c0eb8a5668a69e23d168ffa70f0be9ccfd32b5cc2d26a34ae5b844552d"}, + {file = "mypy_extensions-1.0.0.tar.gz", hash = "sha256:75dbf8955dc00442a438fc4d0666508a9a97b6bd41aa2f0ffe9d2f2725af0782"}, +] + [[package]] name = "networkx" version = "3.2.1" @@ -678,6 +747,17 @@ sql-other = ["SQLAlchemy (>=2.0.0)", "adbc-driver-postgresql (>=0.8.0)", "adbc-d test = ["hypothesis (>=6.46.1)", "pytest (>=7.3.2)", "pytest-xdist (>=2.2.0)"] xml = ["lxml (>=4.9.2)"] +[[package]] +name = "pathspec" +version = "0.12.1" +description = "Utility library for gitignore style pattern matching of file paths." +optional = false +python-versions = ">=3.8" +files = [ + {file = "pathspec-0.12.1-py3-none-any.whl", hash = "sha256:a0d503e138a4c123b27490a4f7beda6a01c6f288df0e4a8b79c7eb0dc7b4cc08"}, + {file = "pathspec-0.12.1.tar.gz", hash = "sha256:a482d51503a1ab33b1c67a6c3813a26953dbdc71c31dacaef9a838c4e29f5712"}, +] + [[package]] name = "pillow" version = "10.2.0" @@ -763,6 +843,21 @@ tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "pa typing = ["typing-extensions"] xmp = ["defusedxml"] +[[package]] +name = "platformdirs" +version = "4.2.0" +description = "A small Python package for determining appropriate platform-specific dirs, e.g. a \"user data dir\"." +optional = false +python-versions = ">=3.8" +files = [ + {file = "platformdirs-4.2.0-py3-none-any.whl", hash = "sha256:0614df2a2f37e1a662acbd8e2b25b92ccf8632929bc6d43467e17fe89c75e068"}, + {file = "platformdirs-4.2.0.tar.gz", hash = "sha256:ef0cc731df711022c174543cb70a9b5bd22e5a9337c8624ef2c2ceb8ddad8768"}, +] + +[package.extras] +docs = ["furo (>=2023.9.10)", "proselint (>=0.13)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.25.2)"] +test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)"] + [[package]] name = "pluggy" version = "1.4.0" @@ -1251,4 +1346,4 @@ zstd = ["zstandard (>=0.18.0)"] [metadata] lock-version = "2.0" python-versions = "^3.11" -content-hash = "bdf7e9229014cdec97a5d1f5c08c90a98e642a299cc93bb281f1721810661b93" +content-hash = "f6c8955daa85626a84eefe196666341f389520cf6d4e0f80b1ffcdf1d44eb0b9" diff --git a/pyproject.toml b/pyproject.toml index 7b84462..f9a73dc 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -31,4 +31,7 @@ pytest = "^8.0.0" pyarrow = "^15.0.0" [tool.poetry.scripts] -fibermorph = "fibermorph.fibermorph:main" \ No newline at end of file +fibermorph = "fibermorph.fibermorph:main" +[tool.poetry.group.dev.dependencies] +black = "^24.2.0" +