-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathops.py
46 lines (32 loc) · 1.25 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import tensorflow as tf
def maxpool2d(x,k=2):
return tf.nn.max_pool(x,ksize=[1,3,3,1],strides=[1,k,k,1],padding='SAME')
def fullyconnect(h,w,b):
return tf.add(tf.matmul(h,w),b)
def relu(x):
return tf.nn.relu(x)
def lrelu(x, leaky=0.2):
return tf.maximum(x, leaky * x)
def conv2x2(x, w):
return tf.nn.conv2d(x, w, [1, 2, 2, 1], padding='SAME')
def conv2d(x,W,b,stride=1):
x=tf.nn.conv2d(x,W,strides=[1,stride,stride,1],padding='SAME')
x=tf.nn.bias_add(x,b)
return lrelu(x)
def conv1x1(x, w,padding='SAME'):
return tf.nn.conv2d(x, w, [1, 1, 1, 1], padding=padding)
'''
def deconv2x2(x, w,output_shape):
#print output_shape
return tf.nn.conv2d_transpose(x, w, output_shape, [1, 2, 2, 1], padding='SAME')
'''
def deconv2x2(x, w):
input_shape = x.get_shape().as_list()
out_ch = w.get_shape().as_list()[-2]
output_shape = [input_shape[0], input_shape[1] * 2, input_shape[2] * 2, out_ch]
return tf.nn.conv2d_transpose(x, w, output_shape, [1, 2, 2, 1], padding='SAME')
def deconv1x1(x, w,output_shape):
#print output_shape
return tf.nn.conv2d_transpose(x, w, output_shape, [1, 1, 1, 1], padding='SAME')
def sigmoid_xent(logits, targets):
return tf.nn.sigmoid_cross_entropy_with_logits(logits, targets)