forked from working-yuhao/DEAL
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_inductive.py
429 lines (377 loc) · 19.3 KB
/
train_inductive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
import os
import time
import math
from argparse import Namespace, ArgumentParser
from typing import Tuple, Union
import torch
from torch_geometric.datasets import Planetoid, CoraFull, PPI, Coauthor, Amazon
from torch_geometric.data import Data
from torch_geometric.utils import subgraph
from torch_geometric.utils.negative_sampling import negative_sampling
import torch_geometric.transforms as T
from model import DEAL, get_attr_emb_model_class
from utils import str2bool, inductive_eval, transductive_eval, precompute_dist_data, seed_everything
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
DATA_DIR = os.path.join(os.path.dirname(__file__), 'data')
class AugmentedData(Data):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def shuffle(self):
shuffle_indices = torch.randperm(self.edge_index.shape[1])
edge_index = self.edge_index[:, shuffle_indices]
edge_labels = self.edge_labels[shuffle_indices]
return AugmentedData(
x=self.x,
edge_index=edge_index,
edge_labels=edge_labels,
dists=self.dists
)
@property
def inputs(self):
return self.edge_index, self.edge_labels
def _get_negative_samples(self, shuffle: bool = True, negative_sampling_ratio: float = 1):
if negative_sampling_ratio > 1:
num_iterations = math.ceil(negative_sampling_ratio)
else:
num_iterations = 1
neg_edge_indices = []
for _ in range(num_iterations):
neg_edge_index_ = negative_sampling(
edge_index=self.edge_index,
num_nodes=self.num_nodes,
num_neg_samples=None, # Default to 1:1 ratio
method='sparse'
)
neg_edge_indices.append(neg_edge_index_)
if len(neg_edge_indices) == 1:
neg_edge_index = neg_edge_indices[0]
else:
neg_edge_index = torch.cat(neg_edge_indices, dim=1)
# Drop duplicate columns
neg_edge_index = torch.unique(neg_edge_index, dim=1)
# Sample desired number
neg_edge_index = neg_edge_index[0: math.ceil(self.num_nodes * negative_sampling_ratio)]
all_edge_index = torch.cat(
[self.edge_index, neg_edge_index],
dim=-1,
)
all_edge_label = torch.cat([
self.edge_labels,
self.edge_labels.new_zeros(neg_edge_index.size(1))
], dim=0)
if shuffle:
shuffle_indices = torch.randperm(all_edge_index.shape[1])
all_edge_index = all_edge_index[:, shuffle_indices]
all_edge_label = all_edge_label[shuffle_indices]
return all_edge_index.to(device), all_edge_label.to(device)
def add_negative_samples(self, shuffle: bool = True, negative_sampling_ratio: float = 1) -> Data:
all_edge_indices, all_edge_labels = self._get_negative_samples(
shuffle=shuffle,
negative_sampling_ratio=negative_sampling_ratio
)
data = AugmentedData(
x=self.x,
edge_index=all_edge_indices,
edge_labels=all_edge_labels,
dists=self.dists if hasattr(self, 'dists') else None
)
return data
class InductiveDeal:
def __init__(self, parsed_arguments: Namespace):
self.seed = seed_everything(parsed_arguments.seed)
self.args = parsed_arguments
self.dataset_name = parsed_arguments.dataset_name.lower()
self.device = device
self.train_data, self.val_data, self.test_data, self.data = self.get_data()
self.model = self._get_model(parsed_arguments, self.train_data).to(self.device)
# node / attr / inter
self.lambda_list = args.thetas # (0.1, 0.85, 0.05)
self.lambda_list = args.lambdas # (0.1, 0.85, 0.05)
ind_lambdas = list(self.lambda_list)
ind_lambdas[0] = 0
self.inductive_lambda_list = ind_lambdas
self.optimizer = torch.optim.Adam(
self.model.parameters(),
lr=parsed_arguments.lr,
weight_decay=parsed_arguments.wd
)
self.profiler = torch.profiler.profile(record_shapes=True)
@staticmethod
def parse_args():
parser = ArgumentParser()
parser.add_argument('--seed', dest='seed', default=42, type=int)
parser.add_argument('--dataset', dest='dataset_name', default='Cora', type=str)
parser.add_argument('--use_tight_alignment', dest='use_tight_alignment', action='store_true',
help='use Strong Alignment', default=False)
parser.add_argument('--use_loose_alignment', dest='use_tight_alignment', action='store_false',
help='use Weak Alignment', default=True)
parser.add_argument('--transductive_val', dest='transductive_val', action='store_true',
help='Perform transductive validation', default=False)
parser.add_argument('--inductive_val', dest='transductive_val', action='store_false',
help='Perform inductive validation', default=True)
# dataset
parser.add_argument('--val_ratio', dest='val_ratio', default=0.1, type=float,
help='Percentage of data to use for [inductive] validation')
parser.add_argument('--test_ratio', dest='test_ratio', default=0.1, type=float,
help='Percentage of data to use for [inductive] testing')
parser.add_argument('--dropout', dest='dropout', type=float, default=0.3,
help='Dropout probability')
parser.add_argument('--negative_sampling_ratio_train', dest='negative_sampling_ratio_train', default=1,
type=float, help="Negative sampling ratio (as a ratio to the true edges) for training split")
parser.add_argument('--negative_sampling_ratio_val', dest='negative_sampling_ratio_val', default=1,
type=float, help="Negative sampling ratio (as a ratio to the true edges) for val split")
parser.add_argument('--negative_sampling_ratio_test', dest='negative_sampling_ratio_test', default=1,
type=float, help="Negative sampling ratio (as a ratio to the true edges) for test split")
# Model Hparams
parser.add_argument('--lambdas', action='store', dest='lambdas',
type=str, nargs='*', default=[0.1, 0.85, 0.05],
help="Lambda values")
parser.add_argument('--thetas', action='store', dest='thetas',
type=str, nargs='*', default=[0.1, 0.85, 0.05],
help="Theta values")
parser.add_argument('--n_hidden_layers', dest='n_hidden_layers', default=2, type=int)
parser.add_argument('--feature_dim', dest='feature_dim', default=64, type=int)
parser.add_argument('--hidden_dim', dest='hidden_dim', default=64, type=int)
parser.add_argument('--output_dim', dest='output_dim', default=64, type=int)
parser.add_argument('--lr', dest='lr', default=1e-2, type=float)
parser.add_argument('--wd', dest='wd', default=0, type=float)
parser.add_argument('--n_epochs', dest='n_epochs', default=5000, type=int)
parser.add_argument('--epoch_log', dest='epoch_log', default=0.05, type=Union[int, float])
parser.add_argument('--gamma', dest='gamma', default=2, type=float)
parser.add_argument('--approximate', dest='approximate', default=-1, type=int,
help='k-hop shortest path distance. -1 means exact shortest path') # -1, 2
parser.add_argument('--use_order', dest='use_order', default=False, type=str2bool,
help='whether use Order Strategy, default False')
parser.add_argument('--train_mode', dest='train_mode', default='cos', type=str,
help='cos, dot, all, pdist, default cos')
parser.add_argument('--loss', dest='loss', default='default', type=str,
help='loss function options: default, etc.')
parser.add_argument('--attr_model', dest='attr_model', default='Emb', type=str,
help='Attribute embedding model, Emb, SAGE, GAT ... , default Emb')
parser.add_argument('--bce', dest='BCE_mode', default=True, type=str2bool, help='If use BCE_mode, default True')
parsed_args = parser.parse_args()
return parsed_args
@staticmethod
def _get_model(parsed_args: Namespace, data: Data):
emb_model = get_attr_emb_model_class(parsed_args.attr_model.lower())
deal_model = DEAL(
emb_dim=parsed_args.output_dim,
attr_num=data.x.shape[1],
node_num=data.x.shape[0],
attr_emb_model=emb_model,
n_hidden_layers=parsed_args.n_hidden_layers,
feature_dim=parsed_args.feature_dim,
hidden_dim=parsed_args.hidden_dim,
train_mode=parsed_args.train_mode,
BCE_mode=parsed_args.BCE_mode,
gamma=parsed_args.gamma,
use_tight_alignment=parsed_args.use_tight_alignment,
dropout_p=parsed_args.dropout,
)
return deal_model
@staticmethod
def show_dataset_info(name: str, data: Data) -> None:
# Assume single data object
print(f'---------- {name} Data Information----------')
print(data)
def get_data(self) -> Tuple[Data, Data, Data, Data]:
# Transform, extracting train/val/test split of nodes
transform = T.Compose([
T.NormalizeFeatures(),
T.ToDevice(self.device),
T.RandomNodeSplit(num_val=self.args.val_ratio, num_test=self.args.test_ratio),
])
if self.dataset_name == 'cora':
dataset = Planetoid(root='/tmp/Cora', name='cora', transform=transform)
elif self.dataset_name == 'corafull':
dataset = CoraFull(root='/tmp/CoraFull', transform=transform)
elif self.dataset_name == 'citeseer':
dataset = Planetoid(root='/tmp/CiteSeer', transform=transform, name='CiteSeer')
elif self.dataset_name == 'pubmed':
dataset = Planetoid(root='/tmp/PubMed', transform=transform, name='pubmed')
elif self.dataset_name == 'coauthor-cs':
dataset = Coauthor(root='/tmp/CoauthorCS', transform=transform, name='CS')
elif self.dataset_name == 'coauthor-physics':
dataset = Coauthor(root='/tmp/CoauthorPhysics', transform=transform, name='Phsyics')
elif self.dataset_name == 'amazon-computers':
dataset = Amazon(root='/tmp/amazon-computers', transform=transform, name='computers')
elif self.dataset_name == 'amazon-photos':
dataset = Amazon(root='/tmp/amazon-photos', transform=transform, name='photo')
else:
raise ValueError(f'Unsupported data type `{self.dataset_name}`')
data = dataset[0]
InductiveDeal.show_dataset_info("All data", data)
# Extract train/val/test splits for the inductive link prediction setting
# Nodes/edges in val/test split are not contained in the training set
if self.args.transductive_val:
train_val_mask = data.train_mask | data.val_mask
# Training data contains both train_mask and val_mask nodes/edges
train_edge_index, train_edge_attr = subgraph(train_val_mask, edge_index=data.edge_index, relabel_nodes=True)
# The validation set is a subset of the training set. There are no links to the rest of
# the training set
val_edge_index, val_edge_attr = subgraph(data.val_mask, edge_index=data.edge_index, relabel_nodes=True)
#
train_x = data.x[train_val_mask]
else:
train_edge_index, train_edge_attr = subgraph(data.train_mask, edge_index=data.edge_index, relabel_nodes=True)
val_edge_index, val_edge_attr = subgraph(data.val_mask, edge_index=data.edge_index, relabel_nodes=True)
#
train_x = data.x[data.train_mask]
val_x = data.x[data.val_mask]
test_x = data.x[data.test_mask]
test_edge_index, test_edge_attr = subgraph(data.test_mask, edge_index=data.edge_index, relabel_nodes=True)
# Create Data objects for train/val/test splits.
# Edge labels are all ones indicating all provided edges are valid
train_data = Data(
x=train_x,
edge_index=train_edge_index,
edge_labels=torch.ones(train_edge_index.shape[1]).long()
)
val_data = Data(
x=val_x,
edge_index=val_edge_index,
edge_labels=torch.ones(val_edge_index.shape[1]).long()
)
test_data = AugmentedData(
x=test_x,
edge_index=test_edge_index,
edge_labels=torch.ones(test_edge_index.shape[1]).long()
)
InductiveDeal.show_dataset_info("Train data", train_data)
InductiveDeal.show_dataset_info("Val data", val_data)
InductiveDeal.show_dataset_info("Test data", test_data)
return train_data, val_data, test_data, data
def prepare_data(self, data_split_name: str, data: Data) -> Data:
save_dir = os.path.join(DATA_DIR, self.dataset_name)
os.makedirs(save_dir, exist_ok=True)
save_path = os.path.join(
save_dir,
f'{data_split_name}_'
f'transductive_val={self.args.transductive_val}_'
f'val_test_ratio={self.args.val_ratio},{self.args.test_ratio}'
f'_data_dists.pt'
)
if os.path.exists(save_path):
print("Loading distance files from disk...")
data.dists = torch.load(save_path, map_location=self.device)
else:
t1 = time.time()
print("Precomputing distance files...")
data.dists = torch.FloatTensor(precompute_dist_data(data.edge_index, data.num_nodes)).to(device)
t2 = time.time()
print(f"Finished precomputing distances on {data.dists.shape[1]} edge indices"
f" in {round(t2-t1, 2)}s. Saving to disk in {save_path}...")
with open(save_path, 'wb') as f:
torch.save(data.dists, f)
new_data = AugmentedData(
x=data.x,
edge_index=data.edge_index,
edge_labels=data.edge_labels,
dists=data.dists,
)
return new_data
def train(self):
log_every = self.args.epoch_log if isinstance(self.args.epoch_log, int) else math.ceil(self.args.epoch_log * self.args.n_epochs)
n_epochs = self.args.n_epochs
log_every = log_every if isinstance(log_every, int) else int(n_epochs * log_every)
t1 = time.time()
running_loss = 0
# Prepare data
train_data = deal.prepare_data(
'train',
self.train_data,
)
val_data: AugmentedData = deal.prepare_data(
'val',
self.val_data,
).add_negative_samples(negative_sampling_ratio=self.args.negative_sampling_ratio_val)
test_data: AugmentedData = self.test_data.add_negative_samples(
negative_sampling_ratio=self.args.negative_sampling_ratio_test
)
t2 = time.time()
InductiveDeal.show_dataset_info("Augmented Train data", train_data)
InductiveDeal.show_dataset_info("Augmented Validation data", val_data)
InductiveDeal.show_dataset_info("Augmented Test data", test_data)
self.model = self.model.to(self.device)
for epoch in range(n_epochs):
# Shuffle training data and add negative samples
batch_train_data: AugmentedData = train_data.add_negative_samples(
negative_sampling_ratio=self.args.negative_sampling_ratio_train
)
train_edges, train_labels = batch_train_data.inputs
# Calculate loss, backward and optimize
self.optimizer.zero_grad()
loss = self.model.default_loss(
train_edges.t(),
train_labels,
batch_train_data,
thetas=self.lambda_list
)
loss.backward()
self.optimizer.step()
# Calculate train/validation performance
_loss = loss.item()
running_loss += _loss
if epoch % log_every == 0:
avg_loss = running_loss / log_every
# Transductive training performance
train_scores = transductive_eval(
deal.model,
train_edges.t(),
train_labels,
train_data,
lambdas=self.lambda_list
)
val_data = val_data.shuffle()
val_edges, val_labels = val_data.inputs
if args.transductive_val:
# Transductive validation performance
val_scores = transductive_eval(
deal.model,
val_edges.t(),
val_labels,
val_data,
lambdas=self.lambda_list,
)
else:
# Inductive validation performance\
val_scores = inductive_eval(
deal.model,
val_edges.t(),
val_labels,
val_data.x,
lambdas=self.inductive_lambda_list # lambda_0 is 0 during inductive inference
)
running_loss = 0.0
print(
'Epoch: %s\n'
'Transductive Train:: [ROC-AUC: %.4f, Average Precision: %.4f, Train loss: %.4f, Average Train loss %.4f]\n'
'%s Validation [ROC-AUC: %.4f, Average Precision: %.4f]\n'
% (epoch + 1,
train_scores[0],
train_scores[1],
_loss,
avg_loss,
'Transductive' if self.args.transductive_val else 'Inductive',
val_scores[0], val_scores[1])
)
t3 = time.time()
test_scores = inductive_eval(
deal.model,
test_data.edge_index.t(),
test_data.edge_labels,
test_data.x,
lambdas=self.inductive_lambda_list # lambda_0 is 0 during inductive inference
)
t4 = time.time()
# Inductive test performance
print('----------Inductive Test----------\n')
print('\033[93m Total Load data time: %.2f s\033[0m' % (t2 - t1))
print('\033[93m Total Train/val time: %.2f s\033[0m' % (t3 - t2))
print('\033[93m Test time: %.2f s\033[0m' % (t4 - t3))
print('\033[93m Total time: %.2f s\033[0m' % (t4 - t1))
print(f'\033[93m ROC-AUC:{test_scores[0]:.4f} AP:{test_scores[1]:.4f}\033[0m')
if __name__ == '__main__':
args = InductiveDeal.parse_args()
deal = InductiveDeal(args)
deal.train()