-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path1.23.tex
126 lines (123 loc) · 3.36 KB
/
1.23.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
\documentclass[a4paper,12pt]{article}
\usepackage{listings}
\newcommand{\ra}{\rightarrow}
\lstset{language=Lisp}
\begin{document}
\noindent
Let's modify \lstinline!timed-prime-test! to print only the running time
of \lstinline!prime?!.
\begin{lstlisting}
(define (timed-prime-test n)
((lambda (start-time)
(prime? n)
(- (current-inexact-milliseconds) start-time))
(current-inexact-mill-seconds)))
\end{lstlisting}
The function \lstinline!times-for-prime! takes as paramaters a prime
number and an integer $n$ and return a list of $n$ times by applying
\lstinline!timed-prime-test! to the prime $n$ times.
\begin{lstlisting}
(define (times-for-prime p n)
(define (loop n result)
(if (= n 0)
result
(loop (- n 1)
(cons (timed-prime-test p)
result))))
(loop n null))
\end{lstlisting}
\lstinline!average-time! returns the average of the result returned by
\lstinline!times-for-prime!.
\begin{lstlisting}
(define (average-time p n)
((lambda (lst)
(/ (foldr + 0 lst)
n))
(times-for-prime p n)))
\end{lstlisting}
Then, we define the function \lstinline!get-prime! to return the
smallest prime number greater or equal to the parameter.
\begin{lstlisting}
(define (get-prime init)
(define (iter n)
(if (prime? n)
n
(iter (+ n 2))))
(if (and (not (= init 2))
(even? init))
(iter (+ init 1))
(iter init)))
\end{lstlisting}
The function \lstinline!prime-list! then generates a list of $n$
primes number greater than the successive product by $10$ of $init$.
\newpage
\begin{lstlisting}
(define (prime-list init count)
(define (iter init count result)
(if (= count 0)
(reverse result)
(iter (* 10 init)
(- count 1)
(cons (get-prime init)
result))))
(iter init count null))
\end{lstlisting}
And finally the function \lstinline!times-list! returns a list of the
result of \lstinline!average-time! applied to a list of prime numbers.
\begin{lstlisting}
(define (times-list lst avg-num)
(map (lambda (p)
(average-time p avg-num))
lst))
\end{lstlisting}
And finally let's define the desired number of average we compute.
\begin{lstlisting}
(define AVG-NUM 10)
\end{lstlisting}
Let's generate the list of prime numbers.
\begin{lstlisting}
(define primes (prime-list 100 12))
primes
\end{lstlisting}
$\rightarrow$ (1009
10007
100003
1000003
10000019
100000007
1000000007
10000000019
100000000003
1000000000039
10000000000037
100000000000031)
Let's compute the corresponding list of times of our prime list for
the unmodified version of \lstinline!smallest-divisor!.
\begin{lstlisting}
(define before (times-list primes AVG-NUM))
\end{lstlisting}
And after we replace \lstinline!(+ test-divisor 1)! by
\lstinline!(next test-divisor)!.
\begin{lstlisting}
(define after (times-list primes AVG-NUM))
\end{lstlisting}
Finally we then obtain the list of ratios between the two versions with:
\begin{lstlisting}
(map / before after)
\end{lstlisting}
$\rightarrow$ (0.6266490765171504
1.4490022172949
1.4926253687315636 \\
1.5144344533838143
1.3868037571025473
1.236468962089798 \\
1.3602381543577067
1.892754865265741
1.8647260043702198 \\
1.9080137170274103
1.9071364199453982
1.909278952905198)
We see that the ratio approach $2$ only for large values of $n$. Wich
makes sens since our speculation deals only with order of growth. For
small values of $n$, the effect of the constants is not negligible.
\end{document}