generated from The-Swarm-Corporation/Swarms-Example-1-Click-Template
-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
209 lines (184 loc) · 6.92 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
from typing import Dict, Any, Optional
import torch
import torch.nn as nn
from loguru import logger
class DynamicNAS:
"""
Dynamic Neural Architecture Search (NAS) and Weight Generation System.
This system dynamically designs a neural network architecture and generates
custom weights based on a natural language prompt.
"""
def __init__(self, device: Optional[str] = None):
"""
Initialize the system.
Args:
device (Optional[str]): Specify 'cuda' or 'cpu'. Defaults to 'cuda' if available.
"""
logger.info("Initializing DynamicNAS...")
self.device = device or (
"cuda" if torch.cuda.is_available() else "cpu"
)
logger.info(f"System running on device: {self.device}")
def parse_prompt(self, prompt: str) -> Dict[str, Any]:
"""
Parses the prompt to extract requirements for the architecture.
Args:
prompt (str): Natural language description of the task.
Returns:
Dict[str, Any]: Parsed information, including model type, input size, etc.
"""
logger.info(f"Parsing prompt: {prompt}")
# Example heuristic-based parsing
if "text" in prompt.lower() or "language" in prompt.lower():
task = "NLP"
input_size = (
512 # Example max sequence length for text tasks
)
model_type = "transformer"
elif "image" in prompt.lower() or "vision" in prompt.lower():
task = "vision"
input_size = (3, 64, 64) # Example image size (C, H, W)
model_type = "cnn"
elif (
"time-series" in prompt.lower()
or "sequence" in prompt.lower()
):
task = "time-series"
input_size = (
128 # Example sequence length for time-series data
)
model_type = "lstm"
else:
task = "general"
input_size = 100
model_type = "mlp"
output_size = 10 # Default output size (e.g., 10 classes)
logger.info(
f"Task: {task}, Model Type: {model_type}, Input Size: {input_size}"
)
return {
"task": task,
"model_type": model_type,
"input_size": input_size,
"output_size": output_size,
}
def generate_architecture(
self, model_type: str, input_size: Any, output_size: int
) -> nn.Module:
"""
Dynamically generates an architecture based on model type and input/output requirements.
Args:
model_type (str): The type of model to generate (e.g., transformer, cnn, lstm).
input_size (Any): Input size specification.
output_size (int): Output size.
Returns:
nn.Module: Generated PyTorch model architecture.
"""
logger.info(
f"Generating architecture for model type: {model_type}"
)
if model_type == "cnn":
# Example CNN for vision tasks
model = nn.Sequential(
nn.Conv2d(3, 32, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(64 * 16 * 16, 128),
nn.ReLU(),
nn.Linear(128, output_size),
).to(self.device)
elif model_type == "transformer":
# Example Transformer Encoder
model = nn.TransformerEncoder(
nn.TransformerEncoderLayer(
d_model=input_size, nhead=8
),
num_layers=6,
).to(self.device)
elif model_type == "lstm":
# Example LSTM for sequence tasks
model = nn.Sequential(
nn.LSTM(
input_size=input_size,
hidden_size=64,
num_layers=2,
batch_first=True,
),
nn.Linear(64, output_size),
).to(self.device)
else: # Default MLP
model = nn.Sequential(
nn.Linear(input_size, 128),
nn.ReLU(),
nn.Linear(128, 64),
nn.ReLU(),
nn.Linear(64, output_size),
).to(self.device)
logger.info(
f"Generated {model_type} architecture successfully."
)
return model
def generate_weights(self, model: nn.Module) -> nn.Module:
"""
Dynamically initializes weights for the given model.
Args:
model (nn.Module): Model architecture.
Returns:
nn.Module: Model with initialized weights.
"""
logger.info("Initializing weights for the model...")
for layer in model.children():
if isinstance(layer, nn.Linear):
nn.init.kaiming_uniform_(
layer.weight, nonlinearity="relu"
)
if layer.bias is not None:
nn.init.zeros_(layer.bias)
elif isinstance(layer, nn.Conv2d):
nn.init.kaiming_uniform_(
layer.weight, nonlinearity="relu"
)
if layer.bias is not None:
nn.init.zeros_(layer.bias)
elif isinstance(layer, nn.LSTM):
for param in layer.parameters():
if param.data.ndimension() >= 2:
nn.init.xavier_uniform_(param.data)
else:
nn.init.zeros_(param.data)
logger.info("Weights initialized successfully.")
return model
def generate_model(self, prompt: str) -> nn.Module:
"""
Full pipeline: Dynamically generate a model architecture and initialize its weights.
Args:
prompt (str): Task description.
Returns:
nn.Module: Fully initialized model.
"""
logger.info(f"Generating model for prompt: {prompt}")
# Step 1: Parse the prompt
task_info = self.parse_prompt(prompt)
# Step 2: Generate architecture
model = self.generate_architecture(
model_type=task_info["model_type"],
input_size=task_info["input_size"],
output_size=task_info["output_size"],
)
# Step 3: Generate weights
model = self.generate_weights(model)
logger.info("Model generation complete.")
return model
# Example Usage
if __name__ == "__main__":
nas_system = DynamicNAS()
task_prompt = "Image classification for medical scans"
try:
generated_model = nas_system.generate_model(task_prompt)
logger.info(f"Generated Model:\n{generated_model}")
except Exception as e:
logger.error(f"Error during model generation: {e}")