-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
178 lines (121 loc) · 6.43 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import torch
import torch.nn as nn
import torchvision.models as models
import torch.nn.functional as F
class EncoderCNN(nn.Module):
def __init__(self):
super(EncoderCNN, self).__init__()
resnet = models.resnet50(pretrained=True)
for param in resnet.parameters():
param.requires_grad_(False)
modules = list(resnet.children())[:-2]
self.resnet = nn.Sequential(*modules)
def forward(self, images):
features = self.resnet(images) #(batch_size,2048,7,7)
features = features.permute(0, 2, 3, 1) #(batch_size,7,7,2048)
features = features.view(features.size(0), -1, features.size(-1)) #(batch_size,49,2048)
return features
#Bahdanau Attention
class Attention(nn.Module):
def __init__(self, encoder_dim,decoder_dim,attention_dim):
super(Attention, self).__init__()
self.attention_dim = attention_dim
self.W = nn.Linear(decoder_dim,attention_dim)
self.U = nn.Linear(encoder_dim,attention_dim)
self.A = nn.Linear(attention_dim,1)
def forward(self, features, hidden_state):
u_hs = self.U(features) #(batch_size,num_layers,attention_dim)
w_ah = self.W(hidden_state) #(batch_size,attention_dim)
combined_states = torch.tanh(u_hs + w_ah.unsqueeze(1)) #(batch_size,num_layers,attemtion_dim)
attention_scores = self.A(combined_states) #(batch_size,num_layers,1)
attention_scores = attention_scores.squeeze(2) #(batch_size,num_layers)
alpha = F.softmax(attention_scores,dim=1) #(batch_size,num_layers)
attention_weights = features * alpha.unsqueeze(2) #(batch_size,num_layers,features_dim)
attention_weights = attention_weights.sum(dim=1) #(batch_size,num_layers)
return alpha,attention_weights
#Attention Decoder
class DecoderRNN(nn.Module):
def __init__(self,embed_size, vocab_size, attention_dim,encoder_dim,decoder_dim, device, drop_prob=0.3):
super().__init__()
#save the model param
self.vocab_size = vocab_size
self.attention_dim = attention_dim
self.decoder_dim = decoder_dim
self.device = device
self.embedding = nn.Embedding(vocab_size,embed_size)
self.attention = Attention(encoder_dim,decoder_dim,attention_dim)
self.init_h = nn.Linear(encoder_dim, decoder_dim)
self.init_c = nn.Linear(encoder_dim, decoder_dim)
self.lstm_cell = nn.LSTMCell(embed_size+encoder_dim,decoder_dim,bias=True)
self.f_beta = nn.Linear(decoder_dim, encoder_dim)
self.fcn = nn.Linear(decoder_dim,vocab_size)
self.drop = nn.Dropout(drop_prob)
def forward(self, features, captions):
#vectorize the caption
embeds = self.embedding(captions)
# Initialize LSTM state
h, c = self.init_hidden_state(features) # (batch_size, decoder_dim)
#get the seq length to iterate
seq_length = len(captions[0])-1 #Exclude the last one
batch_size = captions.size(0)
num_features = features.size(1)
preds = torch.zeros(batch_size, seq_length, self.vocab_size).to(self.device)
alphas = torch.zeros(batch_size, seq_length,num_features).to(self.device)
for s in range(seq_length):
alpha,context = self.attention(features, h)
lstm_input = torch.cat((embeds[:, s], context), dim=1)
h, c = self.lstm_cell(lstm_input, (h, c))
output = self.fcn(self.drop(h))
preds[:,s] = output
alphas[:,s] = alpha
return preds, alphas
def generate_caption(self,features, max_len=50,vocab=None):
# Inference part
# Given the image features generate the captions
batch_size = features.size(0)
h, c = self.init_hidden_state(features) # (batch_size, decoder_dim)
alphas = []
#starting input
word = torch.tensor(vocab.stoi['<SOS>']).view(1,-1).to(self.device)
embeds = self.embedding(word)
captions = []
for i in range(max_len):
alpha,context = self.attention(features, h)
#store the apla score
alphas.append(alpha.cpu().detach().numpy())
lstm_input = torch.cat((embeds[:, 0], context), dim=1)
h, c = self.lstm_cell(lstm_input, (h, c))
output = self.fcn(self.drop(h))
output = output.view(batch_size,-1)
#select the word with most val
predicted_word_idx = output.argmax(dim=1)
#save the generated word
captions.append(predicted_word_idx.item())
#end if <EOS detected>
if vocab.itos[predicted_word_idx.item()] == "<EOS>":
break
#send generated word as the next caption
embeds = self.embedding(predicted_word_idx.unsqueeze(0))
#covert the vocab idx to words and return sentence
return [vocab.itos[idx] for idx in captions],alphas
def init_hidden_state(self, encoder_out):
mean_encoder_out = encoder_out.mean(dim=1)
h = self.init_h(mean_encoder_out) # (batch_size, decoder_dim)
c = self.init_c(mean_encoder_out)
return h, c
class EncoderDecoder(nn.Module):
def __init__(self,embed_size, vocab_size, attention_dim,encoder_dim,decoder_dim, device, drop_prob=0.3):
super().__init__()
self.encoder = EncoderCNN()
self.decoder = DecoderRNN(
embed_size=embed_size,
vocab_size = vocab_size,
attention_dim=attention_dim,
encoder_dim=encoder_dim,
decoder_dim=decoder_dim,
device= device
)
def forward(self, images, captions):
features = self.encoder(images)
outputs = self.decoder(features, captions)
return outputs