Releases: kubeflow/pipelines
Version 0.1.5
You can install ML Pipeline services by running:
kubectl create -f https://storage.googleapis.com/ml-pipeline/release/0.1.5/bootstrapper.yaml
Install python SDK (python 3.5 above) by running:
pip3 install https://storage.googleapis.com/ml-pipeline/release/0.1.5/kfp.tar.gz --upgrade
Changelog since v0.1.4
- Bumping the sample version
Version 0.1.4
You can install ML Pipeline services by running:
kubectl create -f https://storage.googleapis.com/ml-pipeline/release/0.1.4/bootstrapper.yaml
Install python SDK (python 3.5 above) by running:
pip3 install https://storage.googleapis.com/ml-pipeline/release/0.1.4/kfp.tar.gz --upgrade
Changelog since v0.1.3
SDK
- Support Cloud TPU
Version 0.1.3
You can install ML Pipeline services by running:
kubectl create -f https://storage.googleapis.com/ml-pipeline/release/0.1.3/bootstrapper.yaml
Install python SDK (python 3.5 above) by running:
pip3 install https://storage.googleapis.com/ml-pipeline/release/0.1.3/kfp.tar.gz --upgrade
Changelog since v0.1.2
SDK
- Support setting GPU limit and node selector to specify GPU type (#346)
- Support Kubernetes Volume, VolumeMount and Env APIs for Container Operator(#300)
- Add option to Container Operator to mount default GCP service account credential(#430)
- SDK/Components/Python - Removed python_op in favor of python_component (#85)
- SDK/DSL - Improved compilation of dsl.Conditional (steps->dag) (#177)
- SDK/Components - Renamed dockerContainer spec to container (#323)
- SDK/Components - Renamed container.arguments to container.args (#437)
- SDK/DSL - Added support for conditions: !=, <, <=, >=, > (#309)
- SDK/DSL - Pipeline function takes direct default values rather than dsp.PipelineParam. (#110)
- SDK/Components/Python - add support for dependencies in the component image building (#219)
- Notebook - Display highlighted logs only when there are errors. (#292)
First party components:
UI
v0.1.3-rc.3
You can install ML Pipeline services by running:
kubectl create -f https://storage.googleapis.com/ml-pipeline/release/0.1.3-rc.3/bootstrapper.yaml
Install python SDK (python 3.5 above) by running:
pip3 install https://storage.googleapis.com/ml-pipeline/release/0.1.3-rc.3/kfp.tar.gz --upgrade
v0.1.3-rc.2
You can install ML Pipeline services by running:
kubectl create -f https://storage.googleapis.com/ml-pipeline/release/0.1.3-rc.2/bootstrapper.yaml
Install python SDK (python 3.5 above) by running:
pip3 install https://storage.googleapis.com/ml-pipeline/release/0.1.3-rc.2/kfp.tar.gz --upgrade
v0.1.3-rc.1
You can install ML Pipeline services by running:
kubectl create -f https://storage.googleapis.com/ml-pipeline/release/0.1.3-rc.1/bootstrapper.yaml
Install python SDK (python 3.5 above) by running:
pip3 install https://storage.googleapis.com/ml-pipeline/release/0.1.3-rc.1/kfp.tar.gz --upgrade
Version 0.1.2
You can install ML Pipeline services by running:
kubectl create -f https://storage.googleapis.com/ml-pipeline/release/0.1.2/bootstrapper.yaml
Install python SDK (python 3.5 above) by running:
pip3 install https://storage.googleapis.com/ml-pipeline/release/0.1.2/kfp.tar.gz --upgrade
Version 0.1.1
You can install ML Pipeline services by running:
kubectl create -f https://storage.googleapis.com/ml-pipeline/release/0.1.1/bootstrapper.yaml
Install python SDK (python 3.5 above) by running:
pip3 install https://storage.googleapis.com/ml-pipeline/release/0.1.1/kfp.tar.gz --upgrade
Version 0.1.0
You can install ML Pipeline services by running:
kubectl create -f https://storage.googleapis.com/ml-pipeline/release/0.1.0/bootstrapper.yaml
Install python SDK (python 3.5 above) by running:
pip3 install https://storage.googleapis.com/ml-pipeline/release/0.1.0/kfp.tar.gz --upgrade
Version 0.0.42
Initial release of the kubeflow/pipelines repository.