Skip to content

Commit

Permalink
Expose starry_net yaml to GitHub (#10943)
Browse files Browse the repository at this point in the history
Fix GitHub test error:
```
>       with open(file_path, 'r') as component_stream:
E       FileNotFoundError: [Errno 2] No such file or directory: '/usr/local/lib/python3.8/site-packages/google_cloud_pipeline_components/_implementation/starry_net/evaluation/evaluation.yaml'
/usr/local/lib/python3.8/site-packages/kfp/components/load_yaml_utilities.py:53: FileNotFoundError
```


PiperOrigin-RevId: 645623029

Signed-off-by: Googler <nobody@google.com>
Co-authored-by: Googler <nobody@google.com>
  • Loading branch information
chensun and Googler authored Jun 22, 2024
1 parent 48b2d3f commit f1e2314
Show file tree
Hide file tree
Showing 2 changed files with 234 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,197 @@
name: model_evaluation_forecasting
description: |
Computes a google.ForecastingMetrics Artifact, containing evaluation metrics given a model's prediction results.
Creates a dataflow job with Apache Beam and TFMA to compute evaluation metrics.
Supports point forecasting and quantile forecasting for tabular data.
Args:
project (str):
Project to run evaluation container.
location (Optional[str]):
Location for running the evaluation.
If not set, defaulted to `us-central1`.
root_dir (str):
The GCS directory for keeping staging files.
A random subdirectory will be created under the directory to keep job info for resuming
the job in case of failure.
predictions_format (Optional[str]):
The file format for the batch prediction results. `jsonl` is currently the only allowed
format.
If not set, defaulted to `jsonl`.
predictions_gcs_source (Optional[system.Artifact]):
An artifact with its URI pointing toward a GCS directory with prediction or explanation
files to be used for this evaluation.
For prediction results, the files should be named "prediction.results-*".
For explanation results, the files should be named "explanation.results-*".
predictions_bigquery_source (Optional[google.BQTable]):
BigQuery table with prediction or explanation data to be used for this evaluation.
For prediction results, the table column should be named "predicted_*".
ground_truth_format(Optional[str]):
Required for custom tabular and non tabular data.
The file format for the ground truth files. `jsonl` is currently the only allowed format.
If not set, defaulted to `jsonl`.
ground_truth_gcs_source(Optional[Sequence[str]]):
Required for custom tabular and non tabular data.
The GCS uris representing where the ground truth is located.
Used to provide ground truth for each prediction instance when they are not part of the batch prediction jobs prediction instance.
ground_truth_bigquery_source(Optional[str]):
Required for custom tabular.
The BigQuery table uri representing where the ground truth is located.
Used to provide ground truth for each prediction instance when they are not part of the batch prediction jobs prediction instance.
target_field_name (str):
The full name path of the features target field in the predictions file.
Formatted to be able to find nested columns, delimited by `.`.
Alternatively referred to as the ground truth (or ground_truth_column) field.
model (Optional[google.VertexModel]):
The Model used for predictions job.
Must share the same ancestor Location.
prediction_score_column (Optional[str]):
Optional. The column name of the field containing batch prediction scores.
Formatted to be able to find nested columns, delimited by `.`.
If not set, defaulted to `prediction.value` for a `point` forecasting_type and
`prediction.quantile_predictions` for a `quantile` forecasting_type.
forecasting_type (Optional[str]):
Optional. If the problem_type is `forecasting`, then the forecasting type being addressed
by this regression evaluation run. `point` and `quantile` are the supported types.
If not set, defaulted to `point`.
forecasting_quantiles (Optional[Sequence[Float]]):
Required for a `quantile` forecasting_type.
The list of quantiles in the same order appeared in the quantile prediction score column.
If one of the quantiles is set to `0.5f`, point evaluation will be set on that index.
example_weight_column (Optional[str]):
Optional. The column name of the field containing example weights.
Each value of positive_classes provided.
point_evaluation_quantile (Optional[Float]):
Required for a `quantile` forecasting_type.
A quantile in the list of forecasting_quantiles that will be used for point evaluation
metrics.
dataflow_service_account (Optional[str]):
Optional. Service account to run the dataflow job.
If not set, dataflow will use the default woker service account.
For more details, see https://cloud.google.com/dataflow/docs/concepts/security-and-permissions#default_worker_service_account
dataflow_disk_size (Optional[int]):
Optional. The disk size (in GB) of the machine executing the evaluation run.
If not set, defaulted to `50`.
dataflow_machine_type (Optional[str]):
Optional. The machine type executing the evaluation run.
If not set, defaulted to `n1-standard-4`.
dataflow_workers_num (Optional[int]):
Optional. The number of workers executing the evaluation run.
If not set, defaulted to `10`.
dataflow_max_workers_num (Optional[int]):
Optional. The max number of workers executing the evaluation run.
If not set, defaulted to `25`.
dataflow_subnetwork (Optional[str]):
Dataflow's fully qualified subnetwork name, when empty the default subnetwork will be
used. More details:
https://cloud.google.com/dataflow/docs/guides/specifying-networks#example_network_and_subnetwork_specifications
dataflow_use_public_ips (Optional[bool]):
Specifies whether Dataflow workers use public IP addresses.
encryption_spec_key_name (Optional[str]):
Customer-managed encryption key.
Returns:
evaluation_metrics (google.ForecastingMetrics):
google.ForecastingMetrics artifact representing the forecasting evaluation metrics in GCS.
inputs:
- { name: project, type: String }
- { name: location, type: String, default: "us-central1" }
- { name: root_dir, type: system.Artifact }
- { name: predictions_format, type: String, default: "jsonl" }
- { name: predictions_gcs_source, type: Artifact, optional: True }
- { name: predictions_bigquery_source, type: google.BQTable, optional: True }
- { name: ground_truth_format, type: String, default: "jsonl" }
- { name: ground_truth_gcs_source, type: JsonArray, default: "[]" }
- { name: ground_truth_bigquery_source, type: String, default: "" }
- { name: target_field_name, type: String }
- { name: model, type: google.VertexModel, optional: True }
- { name: prediction_score_column, type: String, default: "" }
- { name: forecasting_type, type: String, default: "point" }
- { name: forecasting_quantiles, type: JsonArray, default: "[0.5]" }
- { name: example_weight_column, type: String, default: "" }
- { name: point_evaluation_quantile, type: Float, default: 0.5 }
- { name: dataflow_service_account, type: String, default: "" }
- { name: dataflow_disk_size, type: Integer, default: 50 }
- { name: dataflow_machine_type, type: String, default: "n1-standard-4" }
- { name: dataflow_workers_num, type: Integer, default: 1 }
- { name: dataflow_max_workers_num, type: Integer, default: 5 }
- { name: dataflow_subnetwork, type: String, default: "" }
- { name: dataflow_use_public_ips, type: Boolean, default: "true" }
- { name: encryption_spec_key_name, type: String, default: "" }
outputs:
- { name: evaluation_metrics, type: google.ForecastingMetrics }
- { name: gcp_resources, type: String }
implementation:
container:
image: gcr.io/ml-pipeline/model-evaluation:v0.9
command:
- python
- /main.py
args:
- --setup_file
- /setup.py
- --json_mode
- "true"
- --project_id
- { inputValue: project }
- --location
- { inputValue: location }
- --problem_type
- "forecasting"
- --forecasting_type
- { inputValue: forecasting_type }
- --forecasting_quantiles
- { inputValue: forecasting_quantiles }
- --point_evaluation_quantile
- { inputValue: point_evaluation_quantile }
- --batch_prediction_format
- { inputValue: predictions_format }
- if:
cond: {isPresent: predictions_gcs_source}
then:
- --batch_prediction_gcs_source
- "{{$.inputs.artifacts['predictions_gcs_source'].uri}}"
- if:
cond: {isPresent: predictions_bigquery_source}
then:
- --batch_prediction_bigquery_source
- "bq://{{$.inputs.artifacts['predictions_bigquery_source'].metadata['projectId']}}.{{$.inputs.artifacts['predictions_bigquery_source'].metadata['datasetId']}}.{{$.inputs.artifacts['predictions_bigquery_source'].metadata['tableId']}}"
- if:
cond: {isPresent: model}
then:
- --model_name
- "{{$.inputs.artifacts['model'].metadata['resourceName']}}"
- --ground_truth_format
- { inputValue: ground_truth_format }
- --ground_truth_gcs_source
- { inputValue: ground_truth_gcs_source }
- --ground_truth_bigquery_source
- { inputValue: ground_truth_bigquery_source }
- --root_dir
- "{{$.inputs.artifacts['root_dir'].uri}}"
- --target_field_name
- "instance.{{$.inputs.parameters['target_field_name']}}"
- --prediction_score_column
- { inputValue: prediction_score_column }
- --dataflow_job_prefix
- "evaluation-{{$.pipeline_job_uuid}}-{{$.pipeline_task_uuid}}"
- --dataflow_service_account
- { inputValue: dataflow_service_account }
- --dataflow_disk_size
- { inputValue: dataflow_disk_size }
- --dataflow_machine_type
- { inputValue: dataflow_machine_type }
- --dataflow_workers_num
- { inputValue: dataflow_workers_num }
- --dataflow_max_workers_num
- { inputValue: dataflow_max_workers_num }
- --dataflow_subnetwork
- { inputValue: dataflow_subnetwork }
- --dataflow_use_public_ips
- { inputValue: dataflow_use_public_ips }
- --kms_key_name
- { inputValue: encryption_spec_key_name }
- --output_metrics_gcs_path
- { outputUri: evaluation_metrics }
- --gcp_resources
- { outputPath: gcp_resources }
- --executor_input
- "{{$}}"
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
name: model_upload
inputs:
- {name: project, type: String}
- {name: location, type: String, default: "us-central1"}
- {name: display_name, type: String}
- {name: description, type: String, optional: true, default: ''}
- {name: unmanaged_container_model, type: google.UnmanagedContainerModel, optional: true}
- {name: encryption_spec_key_name, type: String, optional: true, default: ''}
- {name: labels, type: JsonObject, optional: true, default: '{}'}
- {name: parent_model, type: google.VertexModel, optional: true}
outputs:
- {name: model, type: google.VertexModel}
- {name: gcp_resources, type: String}
implementation:
container:
image: gcr.io/ml-pipeline/automl-tables-private:1.0.17
command: [python3, -u, -m, launcher]
args: [
--type, UploadModel,
--payload,
concat: [
'{',
'"display_name": "', {inputValue: display_name}, '"',
', "description": "', {inputValue: description}, '"',
', "encryption_spec": {"kms_key_name":"', {inputValue: encryption_spec_key_name}, '"}',
', "labels": ', {inputValue: labels},
'}'
],
--project, {inputValue: project},
--location, {inputValue: location},
--gcp_resources, {outputPath: gcp_resources},
--executor_input, "{{$}}",
{if: {
cond: {isPresent: parent_model},
then: ["--parent_model_name", "{{$.inputs.artifacts['parent_model'].metadata['resourceName']}}",]
}},
]

0 comments on commit f1e2314

Please sign in to comment.