-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbeams.py
235 lines (214 loc) · 5.8 KB
/
beams.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import numpy as np
import solidspy.preprocesor as pre
def beam(L=10, H=10, F=-1000000, E=206.8e9, v=0.28, nx=20, ny=20, n=1):
match n:
case 1:
return beam_1(L, H, F, E, v, nx, ny)
case 2:
return beam_2(L, H, F, E, v, nx, ny)
case 3:
return beam_3(L, H, F, E, v, nx, ny)
case 4:
return beam_4(L, H, F, E, v, nx, ny)
def beam_1(L=10, H=10, F=-1000000, E=206.8e9, v=0.28, nx=20, ny=20):
"""
Make the mesh for a cuadrilateral model.
Parameters
----------
L : float (optional)
Beam's lenght
H : float (optional)
Beam's height
F : float (optional)
Vertical force.
E : string (optional)
Young module
v : string (optional)
Poisson ratio
nx : int (optional)
Number of element in x direction
ny : int (optional)
Number of element in y direction
Returns
-------
nodes : ndarray
Nodes array
mats : ndarray (1, 2)
Mats array
els : ndarray
Elements array
loads : ndarray
Loads array
BC : ndarray
Boundary conditions nodes
"""
x, y, els = pre.rect_grid(L, H, nx, ny)
mats = np.zeros((els.shape[0], 3))
mats[:] = [E,v,1]
nodes = np.zeros(((nx + 1)*(ny + 1), 5))
nodes[:, 0] = range((nx + 1)*(ny + 1))
nodes[:, 1] = x
nodes[:, 2] = y
mask = (x==L/2)
nodes[mask, 3:] = -1
mask_loads = (x == -L/2) & (y < H/6) & (y > -H/6)
loads_nodes = nodes[mask_loads, 0]
loads = np.zeros((len(loads_nodes), 3))
loads[:, 0] = loads_nodes
loads[:, 2] = F
BC = nodes[mask, 0]
return nodes, mats, els, loads, BC
def beam_2(L=10, H=10, F=-1000000, E=206.8e9, v=0.28, nx=20, ny=20):
"""
Make the mesh for a cuadrilateral model.
Parameters
----------
L : float (optional)
Beam's lenght
H : float (optional)
Beam's height
F : float (optional)
Vertical force.
E : string (optional)
Young module
v : string (optional)
Poisson ratio
nx : int (optional)
Number of element in x direction
ny : int (optional)
Number of element in y direction
Returns
-------
nodes : ndarray
Nodes array
mats : ndarray (1, 2)
Mats array
els : ndarray
Elements array
loads : ndarray
Loads array
BC : ndarray
Boundary conditions nodes
"""
x, y, els = pre.rect_grid(L, H, nx, ny)
mats = np.zeros((els.shape[0], 3))
mats[:] = [E,v,1]
nodes = np.zeros(((nx + 1)*(ny + 1), 5))
nodes[:, 0] = range((nx + 1)*(ny + 1))
nodes[:, 1] = x
nodes[:, 2] = y
mask_1 = (x == L/2) & (y > H/4)
mask_2 = (x == L/2) & (y < -H/4)
mask = np.bitwise_or(mask_1, mask_2)
nodes[mask, 3:] = -1
mask_loads = (x == -L/2) & (y < H/6) & (y > -H/6)
loads_nodes = nodes[mask_loads, 0]
loads = np.zeros((len(loads_nodes), 3))
loads[:, 0] = loads_nodes
loads[:, 2] = F
#look here
BC = nodes[mask, 0]
return nodes, mats, els, loads, BC
def beam_3(L=10, H=10, F=-1000000, E=206.8e9, v=0.28, nx=20, ny=20):
"""
Make the mesh for a cuadrilateral model.
Parameters
----------
L : float (optional)
Beam's lenght
H : float (optional)
Beam's height
F : float (optional)
Vertical force.
E : string (optional)
Young module
v : string (optional)
Poisson ratio
nx : int (optional)
Number of element in x direction
ny : int (optional)
Number of element in y direction
Returns
-------
nodes : ndarray
Nodes array
mats : ndarray (1, 2)
Mats array
els : ndarray
Elements array
loads : ndarray
Loads array
BC : ndarray
Boundary conditions nodes
"""
x, y, els = pre.rect_grid(L, H, nx, ny)
mats = np.zeros((els.shape[0], 3))
mats[:] = [E,v,1]
nodes = np.zeros(((nx + 1)*(ny + 1), 5))
nodes[:, 0] = range((nx + 1)*(ny + 1))
nodes[:, 1] = x
nodes[:, 2] = y
mask_1 = (x == L/2) & (y > H/4)
mask_2 = (x == L/2) & (y < -H/4)
mask = np.bitwise_or(mask_1, mask_2)
nodes[mask, 3:] = -1
mask_loads = (x == -L/2) & (y == H/2)
loads_nodes = nodes[mask_loads, 0]
loads = np.zeros((len(loads_nodes), 3))
loads[:, 0] = loads_nodes
loads[:, 2] = F
#look here
BC = nodes[mask, 0]
return nodes, mats, els, loads, BC
def beam_4(L=10, H=10, F=-1000000, E=206.8e9, v=0.28, nx=20, ny=20):
"""
Make the mesh for a cuadrilateral model.
Parameters
----------
L : float (optional)
Beam's lenght
H : float (optional)
Beam's height
F : float (optional)
Vertical force.
E : string (optional)
Young module
v : string (optional)
Poisson ratio
nx : int (optional)
Number of element in x direction
ny : int (optional)
Number of element in y direction
Returns
-------
nodes : ndarray
Nodes array
mats : ndarray (1, 2)
Mats array
els : ndarray
Elements array
loads : ndarray
Loads array
BC : ndarray
Boundary conditions nodes
"""
x, y, els = pre.rect_grid(L, H, nx, ny)
mats = np.zeros((els.shape[0], 3))
mats[:] = [E,v,1]
nodes = np.zeros(((nx + 1)*(ny + 1), 5))
nodes[:, 0] = range((nx + 1)*(ny + 1))
nodes[:, 1] = x
nodes[:, 2] = y
mask_1 = (x < -L/2.2) & (y == -H/2)
mask_2 = (x > L/2.2) & (y == -H/2)
mask = np.bitwise_or(mask_1, mask_2)
nodes[mask_1, 3:] = -1
nodes[mask_2, 4] = -1
mask_loads = (x == 0) & (y == H/2)
loads_nodes = nodes[mask_loads, 0]
loads = np.zeros((len(loads_nodes), 3))
loads[:, 0] = loads_nodes
loads[:, 2] = F
#look here
BC = nodes[mask, 0]
return nodes, mats, els, loads, BC