-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkumari_sangeeta_lab4p3.cu
136 lines (105 loc) · 3.17 KB
/
kumari_sangeeta_lab4p3.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#include <iostream>
#include <stdlib.h>
#include <iomanip>
#include <time.h>
#include <sys/time.h>
#include <cuda.h>
using namespace std;
#define MAX_ARRAY_SIZE 1024
#define RANDOM_MAX 1000
#define TILE_DIM 16
#define BLOCK_ROWS 8
#define EPSILON 0.000001
#define NUM_BLOCKS (MAX_ARRAY_SIZE/TILE_DIM)
float A[MAX_ARRAY_SIZE][MAX_ARRAY_SIZE];
float C[MAX_ARRAY_SIZE][MAX_ARRAY_SIZE];
void serial();
void init_F();
int check();
__global__ void matrixTranspose1(float *);
__global__ void matrixTranspose2(const float *, float *);
int main()
{
float *d_a;
//float *d_c;
struct timeval startTime, endTime;
size_t memsize = MAX_ARRAY_SIZE * MAX_ARRAY_SIZE * sizeof(float);
cudaMalloc((void**) &d_a, memsize);
//cudaMalloc((void**) &d_c, memsize);
init_F();
cudaMemcpy(d_a,A,memsize,cudaMemcpyHostToDevice);
//cudaMemcpy(d_c,C,memsize,cudaMemcpyHostToDevice);
gettimeofday(&startTime, NULL);
//serial();
dim3 dimGrid2(MAX_ARRAY_SIZE/TILE_DIM, MAX_ARRAY_SIZE/TILE_DIM);
dim3 dimBlock2(TILE_DIM, TILE_DIM);
matrixTranspose1<<< 16, 1024 >>>(d_a);
//matrixTranspose2<<< dimGrid2, dimBlock2 >>>(d_a,d_c);
gettimeofday(&endTime, NULL);
double seconds = endTime.tv_sec - startTime.tv_sec;
double useconds = endTime.tv_usec - startTime.tv_usec;
double duration = seconds + useconds/1000000.0;
cout<<"\nTime taken for Matrix Transpose on GPU (time): "<<fixed<<setprecision(7)<<duration<<endl;
cudaMemcpy(C,d_a,memsize,cudaMemcpyDeviceToHost);
if(check() == 1) {
cout<<"\nMatrix Transpose Successful!"<<endl;
}
cudaFree(d_a);
return 0;
}
void init_F()
{
srand(time(NULL));
for (int i = 0; i < MAX_ARRAY_SIZE; i++) {
for (int j = 0; j < MAX_ARRAY_SIZE; j++) {
A[i][j] = rand() % RANDOM_MAX;
}
}
}
__global__ void matrixTranspose1(float *A) {
int width = MAX_ARRAY_SIZE / gridDim.x;
for(int i = blockIdx.x * width; i < blockIdx.x * width + width; i++) {
int rowWidth = i / blockDim.x + 1;
for(int j = threadIdx.x * rowWidth; j < i && j < threadIdx.x * rowWidth + rowWidth; j++) {
float temp = A[i * MAX_ARRAY_SIZE + j];
A[i * MAX_ARRAY_SIZE + j] = A[j * MAX_ARRAY_SIZE + i];
A[j * MAX_ARRAY_SIZE + i] = temp;
}
}
}
__global__ void matrixTranspose2(const float *F, float *C)
{
__shared__ float tile[TILE_DIM][TILE_DIM];
int x = blockIdx.x * TILE_DIM + threadIdx.x;
int y = blockIdx.y * TILE_DIM + threadIdx.y;
int width = gridDim.x * TILE_DIM;
for (int j = 0; j < TILE_DIM; j += BLOCK_ROWS)
tile[threadIdx.y+j][threadIdx.x] = F[(y+j)*width + x];
__syncthreads();
x = blockIdx.y * TILE_DIM + threadIdx.x;
y = blockIdx.x * TILE_DIM + threadIdx.y;
for (int j = 0; j < TILE_DIM; j += BLOCK_ROWS)
C[(y+j)*width + x] = tile[threadIdx.x][threadIdx.y + j];
}
void serial()
{
for (int i = 0; i < MAX_ARRAY_SIZE; i++) {
for (int j = (i+1); j < MAX_ARRAY_SIZE; j++) {
float temp = A[i][j];
A[i][j] = A[j][i];
A[j][i] = temp;
}
}
}
int check()
{
for (int i = 0; i < MAX_ARRAY_SIZE; i++) {
for (int j = 0; j < MAX_ARRAY_SIZE; j++) {
if(abs(C[i * MAX_ARRAY_SIZE + j] - A[j * MAX_ARRAY_SIZE + i]) < EPSILON){
cout<<"\nMismatch at index: ("<<i<<","<<j<<")"<<endl;
return 0;
}
}
}
return 1;
}