forked from williamfiset/Algorithms
-
Notifications
You must be signed in to change notification settings - Fork 0
/
CircleCircleIntersectionArea.java
167 lines (131 loc) · 5.15 KB
/
CircleCircleIntersectionArea.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
/**
* This file shows you how to find the area of intersection of two circles
*
* <p>Time Complexity: O(1)
*
* <p>NOTE: This file could use some formal testing.
*
* @author William Fiset, william.alexandre.fiset@gmail.com
*/
package com.williamfiset.algorithms.geometry;
import static java.lang.Math.*;
import java.awt.geom.*;
public class CircleCircleIntersectionArea {
private static final double EPS = 1e-6;
// Due to double rounding precision the value passed into the acos
// function may be outside its domain of [-1, +1] which would return
// the value Double.NaN which we do not want.
private static double arccosSafe(double x) {
if (x >= +1.0) return 0;
if (x <= -1.0) return PI;
return acos(x);
}
public static double circleCircleIntersectionArea(Point2D c1, double r1, Point2D c2, double r2) {
double r = r1, R = r2;
Point2D c = c1, C = c2;
if (r1 > r2) {
r = r2;
R = r1;
c = c2;
C = c1;
}
double dist = c1.distance(c2);
Point2D[] intersections = circleCircleIntersection(c1, r1, c2, r2);
// Smaller circle is contained within larger circle
if (intersections == null) {
return PI * r * r;
// Circles do not intersect
} else if (intersections.length == 0) {
return 0;
// One intersection point
} else if (intersections.length == 1) {
// Check if the smaller circle is inside larger circle
if (dist < R) {
return PI * r * r;
} else {
return 0;
}
// Circles intersect at two distinct points
} else {
// http://stackoverflow.com/questions/4247889/area-of-intersection-between-two-circles
double d = dist;
Double part1 = r * r * arccosSafe((d * d + r * r - R * R) / (2 * d * r));
Double part2 = R * R * arccosSafe((d * d + R * R - r * r) / (2 * d * R));
Double part3 = 0.5 * sqrt((-d + r + R) * (d + r - R) * (d - r + R) * (d + r + R));
return part1 + part2 - part3;
}
}
// Finds the intersection points of two circles. If the smaller circle is contained
// within the larger one this method returns null. If there is no intersection point
// an empty array is returned. If there is a unique intersection point that point alone
// is returned, otherwise two distinct points are returned where the intersection is.
public static Point2D[] circleCircleIntersection(Point2D c1, double r1, Point2D c2, double r2) {
// r is the smaller radius and R is bigger radius
double r, R;
// c is the center of the small circle
// C is the center of the big circle
Point2D c, C;
// Determine which is the bigger/smaller circle
if (r1 < r2) {
r = r1;
R = r2;
c = c1;
C = c2;
} else {
r = r2;
R = r1;
c = c2;
C = c1;
}
double dist = c1.distance(c2);
// There are an infinite number of solutions
if (dist < EPS && abs(r - R) < EPS) return null;
// No intersection (small circle contained within big circle)
if (r + dist < R) return null;
// No intersection (circles are disjoint)
if (r + R < dist) return new Point2D[] {};
// Let (cx, cy) be the center of the small circle
// Let (Cx, Cy) be the center of the larger circle
double cx = c.getX();
double Cx = C.getX();
double cy = c.getY();
double Cy = C.getY();
// Compute the vector from the big circle to the little circle
double vx = cx - Cx;
double vy = cy - Cy;
// Scale the vector by R and offset the vector so that the head of the vector
// is positioned on the circumference of the big circle ready to be rotated
double x = (vx / dist) * R + Cx;
double y = (vy / dist) * R + Cy;
Point2D point = new Point2D.Double(x, y);
// Unique intersection point on circumference of both circles
if (abs(r + R - dist) < EPS || abs(R - (r + dist)) < EPS) return new Point2D[] {point};
// Find the angle via cos law
double angle = arccosSafe((r * r - dist * dist - R * R) / (-2.0 * dist * R));
// Two unique intersection points
Point2D pt1 = rotatePoint(C, point, angle);
Point2D pt2 = rotatePoint(C, point, -angle);
return new Point2D[] {pt1, pt2};
}
// Rotate point 'pt' a certain number of radians clockwise
// relative to some fixed point 'fp'. Note that the angle
// should be specified in radians, not degrees.
private static Point2D rotatePoint(Point2D fp, Point2D pt, double angle) {
double fpx = fp.getX();
double fpy = fp.getY();
double ptx = pt.getX();
double pty = pt.getY();
// Compute the vector <x, y> from the fixed point
// to the point of rotation.
double x = ptx - fpx;
double y = pty - fpy;
// Apply the clockwise rotation matrix to the vector <x, y>
// | cos(theta) sin(theta) ||x| | xcos(theta) + ysin(theta) |
// | -sin(theta) cos(theta) ||y| = | -xsin(theta) + ycos(theta) |
double xRotated = x * cos(angle) + y * sin(angle);
double yRotated = y * cos(angle) - x * sin(angle);
// The rotation matrix rotated the vector about the origin, so we
// need to offset it by the point (fpx, fpy) to get the right answer
return new Point2D.Double(fpx + xRotated, fpy + yRotated);
}
}