forked from CherBass/CapsPix2Pix
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_capspix2pix.py
526 lines (439 loc) · 24.6 KB
/
train_capspix2pix.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
from __future__ import print_function
import matplotlib
matplotlib.use('agg')
import torch
import cv2
import torch.nn as nn
import torch.optim as optim
import torch.utils.data
import torchvision.utils as vutils
from torch.autograd import Variable
from Capsule_Networks import conditionalCapsNetD
from Capsule_Networks import convCapsGAN_D
from Networks import conditionalCapsDcganD
from Capsule_Networks import capspix2pixG
from AxonDataset import AxonDataset, SyntheticDataset
from helper_functions import weights_init
import os
import json
import numpy as np
import matplotlib.pyplot as plt
import argparse
import pytorch_ssim
from custom_losses import dice_soft
import time
import sys
# print(['Using device: ', torch.cuda.get_device_name(0)])
plt.switch_backend('agg')
def adjust_learning_rate(optimizer, init_lr, epoch, factor, every, start_lr):
lrd = init_lr / every
old_lr = optimizer.param_groups[0]['lr']
# linearly decaying lr
lr = old_lr - lrd
lr = start_lr - (lrd * epoch)
if lr < 0: lr = 0
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def achieve_args():
parse = argparse.ArgumentParser()
parse.add_argument('--experiment', type=str, default='capspix2pix_',
help='Experiment name.')
parse.add_argument('--data_load_name', type=str, default='crops256',
help='data to load (default=crops256)')
parse.add_argument('--val_load_name', type=str, default='syn256',
help='val data to load (default=syn256)')
parse.add_argument('--image_size', type=int, default=256,
help='image size (default=128)')
parse.add_argument('--val_image_size', type=int, default=256,
help='image size (default=128)')
parse.add_argument('--dataloader_read', type=str, default='npy', # options: npy, image
help='whether dataloader reads npy data, or reads from folder on the fly '
'>> use image if there are memory constraints')
parse.add_argument('--noise_source', type=str, default='input', # options: input, broadcast, dropout, broadcast_conv, broadcast_latent
help='noise source (default=input)')
parse.add_argument('--noise_size', type=int, default=100, # this value needs to be divisible by image size for input = 'broadcast' or broadcast_latent
help='Batch size (default=128)')
parse.add_argument('--batch_size', type=int, default=4, # reduce batch size if there are memory constraints
help='Batch size (default=64)')
parse.add_argument('--iter_size', type=int, default=1,
help='How many batches before update (default=1)')
parse.add_argument('--val_batch_size', type=int, default=4,
help='Val Batch size (default=128)')
parse.add_argument('--normalise_data', type=bool, default=False,
help='normalise data between [-1,1] (default=False)')
parse.add_argument('--drop_out', type=float, default=0.5,
help='drop_out (default=0.0)')
parse.add_argument('--drop_out_train', type=bool, default=True
, help='whether to use drop out in training')
parse.add_argument('--batch_norm', type=bool, default=False
, help='whether to batch_norm out in training')
parse.add_argument('--lr', type=float, default=0.0002,
help='Learning rate (default=0.0002)')
parse.add_argument('--alpha_D', type=float, default=0.9,
help='momentum (default=0.9)')
parse.add_argument('--alpha_G', type=float, default=0.9,
help='momentum (default=0.9)')
parse.add_argument('--betas', type=float, default=(0.5, 0.999),
help='betas (default=0.5, 0.999)')
parse.add_argument('--optim_G', type=str, default='Adam', # options: Adam, RSMprop, SGD
help='GAN optimiser (default=RSMProp)')
parse.add_argument('--optim_D', type=str, default='Adam', # options: Adam, RSMprop, SGD
help='GAN optimiser (default=RSMProp)')
parse.add_argument('--net_D', type=str, default='conditionalCapsDcganD', # options: conditionalCapsNetD, convCapsGAN_D, conditionalCapsDcganD
help='Discriminator network (default=conditionalCapsDcganD)')
parse.add_argument('--net_G', type=str, default='capspix2pixG', # options: capspix2pixG
help='Generator network functions (default=capspix2pixG)')
parse.add_argument('--dynamic_routing', type=str, default='local', # options: local
help=' local dynamic routing')
parse.add_argument('--annealStart', type=int, default=0, help='annealing learning rate start to')
parse.add_argument('--annealEvery', type=int, default=400, help='epoch to reaching at learning rate of 0')
parse.add_argument('--D_loss', type=str, default='BCE', # options: 'BCE'
help='Dicriminator loss functions (default=BCE)')
parse.add_argument('--gan_loss', type=str, default='l1_loss', # options: l1_loss, dice_loss, l1_dice_loss
help='GAN loss functions (default=l1_loss)')
parse.add_argument('--gan_nonlinearity', type=str, default='leakyRelu', # options: leakyRelu, relu
help='GAN D/G network nonlinearity in network (default=relu)')
parse.add_argument('--gan_last_nonlinearity', type=str, default='sigmoid', # options: tanh, sigmoid
help='GAN last nonlinearity (default=sigmoid)')
parse.add_argument('--caps_nonlinearity', type=str, default='sqaush', # options: sqaush
help='Capsule network nonlinearity (default=sqaush)')
parse.add_argument('--train_fc', type=bool, default=True,
help='train fc for noise (default=True)')
parse.add_argument('--label_smooth_real_D', type=float, default=0.9,
help='Soft labels for real pair- Discriminator (default=1)')
parse.add_argument('--label_smooth_fake_D', type=float, default=0.1,
help='Soft labels for fake pair- Discriminator (default=0)')
parse.add_argument('--label_smooth_fake_G', type=float, default=1,
help='Soft labels for fake pair- Generator (default=1)')
parse.add_argument('--epochs', type=int, default=50,
help='Number of training epochs.')
parse.add_argument('--save_every', type=int, default=200,
help='After how many epochs to save the model.')
parse.add_argument('--save_image_every', type=int, default=1650,
help='After how many epochs to save the model.')
parse.add_argument('--display_every', type=int, default=10,
help='After how many epochs to save the model.')
parse.add_argument('--save_dir', type=str, default='results/',
help='Path to save the trained models.')
parse.add_argument('--lambdaIMG_G', type=float, default=1, help='lambdaIMG')
parse.add_argument('--lambdaIMG_D', type=float, default=1, help='lambdaIMG')
parse.add_argument('--lambda_L1', type=float, default=1, help='lambdaL1')
parse.add_argument('--lambda_D', type=float, default=1, help='lambdaD')
parse.add_argument('--lambda_G', type=float, default=1, help='lambdaG')
# params for loading experiments
parse.add_argument('--load_exp', action='store_true',
help='whether to load existing experiment')
parse.add_argument('--continue_epoch', type=int, default=0,
help='which epoch to start if loading experiment')
parse.add_argument('--model_to_load', type=str, default='.pt',
help='which model to load if loading experiment')
parse.add_argument('--exp_to_load', type=str, default='',
help='which exp to load if loading experiment')
parse.add_argument('--notes', type=str, default='',
help='notes.')
args = parse.parse_args()
return args
if __name__ == '__main__':
args = vars(achieve_args())
# Setting parameters
timestr = time.strftime("%d%m%Y-%H%M")
__location__ = os.path.realpath(
os.path.join(os.getcwd(), os.path.dirname(__file__)))
args['time_date'] = timestr
# args['drop_out_train'] =True
if args['load_exp']:
experiment = args['exp_to_load']
directory = args['save_dir'] + experiment
else:
experiment = args['experiment']
directory = args['save_dir'] + experiment + timestr
path = os.path.join(__location__,directory)
if not os.path.exists(path):
os.makedirs(path)
if args['load_exp']:
load_exp = True
continue_epoch = args['continue_epoch']
model_to_load = args['model_to_load']
exp_to_load = args['exp_to_load']
with open(path+'/parameters.json') as file:
params = json.load(file)
args.update(params)
args['load_exp'] = load_exp
args['continue_epoch'] = continue_epoch
args['model_to_load'] = model_to_load
args['exp_to_load'] = exp_to_load
else:
with open(path + '/parameters.json', 'w') as file:
json.dump(args, file, indent=4, sort_keys=True)
axon_dataset = AxonDataset(data_name=args['data_load_name'], folder=args['data_load_name'], normalise=args['normalise_data'], read=args['dataloader_read'])
axon_dataset_val = SyntheticDataset(data_name=args['val_load_name'], type='val')
args['cuda'] = torch.cuda.is_available()
dataloader = torch.utils.data.DataLoader(axon_dataset, batch_size = args['batch_size'], shuffle = True, num_workers = 2) # We use dataLoader to get the images of the training set batch by batch.
valDataloader = torch.utils.data.DataLoader(axon_dataset_val, batch_size=args['val_batch_size'], shuffle=True) # We use dataLoader to get the images of the training set batch by batch.
val_data = torch.FloatTensor(args['val_batch_size'], 1, args['image_size'], args['image_size'])
val_label = torch.FloatTensor(args['val_batch_size'], 1, args['image_size'], args['image_size'])
args['save_image_every'] = len(dataloader) // 2
# initialise networks
num_routes = int(((((args['image_size']-9+1)/2)-9+1)-9+1)/2)
if args['net_D'] == 'convCapsGAN_D':
netD = convCapsGAN_D(args)
elif args['net_D'] == 'conditionalCapsNetD':
netD = conditionalCapsNetD(args, num_routes=num_routes*num_routes*32)
elif args['net_D'] == 'conditionalCapsDcganD':
netD = conditionalCapsDcganD(args)
if args['net_G'] == 'capspix2pixG':
netG = capspix2pixG(args)
if args['load_exp']:
netG.load_state_dict(torch.load(path + '/' + 'ModelG_' + args['model_to_load']))
netD.load_state_dict(torch.load(path + '/' + 'ModelD_' + args['model_to_load']))
else:
netG.apply(weights_init)
netD.apply(weights_init)
# loss functions
criterionBCE = nn.BCELoss()
criterionCAE = nn.L1Loss()
ssim_loss = pytorch_ssim.SSIM()
if args['cuda']:
netD = netD.cuda()
netG = netG.cuda()
criterionBCE.cuda()
criterionCAE.cuda()
val_data, val_label = val_data.cuda(), val_label.cuda()
# whether to train the fully connected layer for noise input
if (not(args['train_fc'])) & (args['noise_source'] == 'input'):
netG.fc.weight.requires_grad = False
netG.fc.bias.requires_grad = False
netG.fc_val.weight.requires_grad = False
netG.fc_val.bias.requires_grad = False
# get randomly sampled validation images and save it
val_iter = iter(valDataloader)
data_val = val_iter.next()
val_data_cpu, val_label_cpu = data_val
val_label_cpu, val_data_cpu = val_label_cpu.cuda(), val_data_cpu.cuda()
val_label.resize_as_(val_label_cpu).copy_(val_label_cpu)
val_label[0, 0, :, :] = torch.zeros((1, args['val_image_size'], args['val_image_size']))
val_data.resize_as_(val_data_cpu).copy_(val_data_cpu)
val_data[0, 0, :, :] = torch.zeros((1, args['val_image_size'], args['val_image_size']))
vutils.save_image(val_data, '%s/syn_target.png' % path, normalize=True)
vutils.save_image(val_label, '%s/syn_input.png' % path, normalize=True)
val_data, val_label = Variable(val_data), Variable(val_label)
if args['optim_D'] == 'RSMprop':
optimizerD = optim.RMSprop(filter(lambda p: p.requires_grad, netD.parameters()), lr=args['lr'], alpha=args['alpha_D'], weight_decay=0)
elif args['optim_D'] == 'Adam':
optimizerD = optim.Adam(filter(lambda p: p.requires_grad, netD.parameters()), lr=args['lr'], betas=args['betas'])
elif args['optim_D'] == 'SGD':
optimizerD = optim.SGD(filter(lambda p: p.requires_grad, netD.parameters()), lr=args['lr'])
if args['optim_G'] == 'RSMprop':
optimizerG = optim.RMSprop(filter(lambda p: p.requires_grad, netG.parameters()), lr=args['lr'], alpha=args['alpha_G'], weight_decay=0)
elif args['optim_G'] == 'Adam':
optimizerG = optim.Adam(filter(lambda p: p.requires_grad, netG.parameters()), lr=args['lr'], betas=args['betas'])
elif args['optim_D'] == 'SGD':
optimizerG = optim.SGD(filter(lambda p: p.requires_grad, netG.parameters()), lr=args['lr'])
optimizerD.zero_grad()
optimizerG.zero_grad()
num_saves = (len(dataloader) // args['save_every'] +1)*args['epochs']
if args['load_exp']:
start_epoch = args['continue_epoch']
a = (start_epoch) * (len(dataloader) // args['save_every']) + 1
all_error_D = np.zeros(num_saves)
all_error_G = np.zeros(num_saves)
all_error_L1 = np.zeros(num_saves)
all_error_dice = np.zeros(num_saves)
all_ssim = np.zeros(num_saves)
all_error_D_temp = np.load(path + '/' + 'train_error_D.npy')
all_error_G_temp = np.load(path + '/' + 'train_error_G.npy')
len_saved = all_error_D_temp.size
if (args['gan_loss'] == 'l1_loss') or (args['gan_loss'] == 'l1_dice_loss'):
all_error_L1_temp = np.load(path + '/' + 'train_error_L1.npy')
all_error_L1[:len_saved] = all_error_L1_temp
all_ssim_temp = np.load(path + '/' + 'train_ssim.npy')
if (args['gan_loss'] == 'dice_loss') or (args['gan_loss'] == 'l1_dice_loss'):
all_error_dice_temp = np.load(path + '/' + 'train_error_dice.npy')
all_error_dice[:len_saved] = all_error_dice_temp
all_error_D[:len_saved] = all_error_D_temp
all_error_G[:len_saved] = all_error_G_temp
all_ssim[:len_saved] = all_ssim_temp
else:
all_error_D = np.zeros(num_saves)
all_error_G = np.zeros(num_saves)
all_error_L1 = np.zeros(num_saves)
all_error_dice = np.zeros(num_saves)
all_ssim = np.zeros(num_saves)
start_epoch = 0
a = 0
for epoch in range(start_epoch, args['epochs']):
netD.train()
if epoch > args['annealStart']:
adjust_learning_rate(optimizerD, args['lr'], epoch, None, args['annealEvery'], args['lr'])
adjust_learning_rate(optimizerG, args['lr'], epoch, None, args['annealEvery'], args['lr'])
t0 = time.time()
for i, (data, label) in enumerate(dataloader):
if (i+1) % args['iter_size'] == 0:
update = True
else:
update = False
args['state'] = 'train'
netG.train()
# first train discriminator on real data- target = 1
netD.zero_grad()
target_real = torch.ones(data.size()[0])
batch_size = data.size()[0]
if args['cuda']:
data, target_real, label = data.cuda(), target_real.cuda(), label.cuda()
data, target_real, label = Variable(data), Variable(target_real), Variable(label)
# ---------------------
# Train Discriminator
# ---------------------
# real loss
if (args['net_D'] == 'convCapsGAN_D') or (args['net_D'] == 'conditionalCapsDcganD'):
pred = netD(torch.cat([data, label], dim=1), args)
elif args['net_D'] == 'conditionalCapsNetD':
pred, output, discri_reconstruction, masked = netD(torch.cat([data, label], dim=1))
# alternatively can try binary cross entropy:
errD_real = criterionBCE(pred, target_real*args['label_smooth_real_D'])
# pass noise through generator, then train discriminator on fake images- target = 0
if args['noise_source'] == 'input':
noise = torch.randn(data.size()[0], args['noise_size'])
elif (args['noise_source'] == 'broadcast'):
noise = torch.randn(data.size()[0], args['noise_size'], 1, 1)
num_copies = args['image_size'] // args['noise_size']
if args['image_size'] % args['noise_size'] == 0:
noise = noise.repeat(1, num_copies, args['image_size']) # specifies number of copies
noise = noise.unsqueeze(1)
else:
print('noise size is indivisible by image size')
elif (args['noise_source'] == 'broadcast_conv'):
noise = torch.randn(data.size()[0], args['noise_size'], 1, 1)
noise = noise.repeat(1, 1, args['image_size'], args['image_size']) # specifies number of copies
else:
noise = torch.zeros(0)
if args['cuda']:
noise = noise.cuda()
noise = Variable(noise)
fake, x_out = netG(label, noise, args)
# compare generated image to data- ssim metric
ssim_value = pytorch_ssim.ssim(data, fake).item()
target_fake = torch.zeros(data.size()[0])
if args['cuda']:
target_fake = target_fake.cuda()
target_fake = Variable(target_fake)
if (args['net_D'] == 'convCapsGAN_D') or (args['net_D'] == 'conditionalCapsDcganD'):
pred = netD(torch.cat([fake.detach(), label], dim=1), args)
elif args['net_D'] == 'conditionalCapsNetD':
pred, output, discri_reconstruction, masked = netD(torch.cat([fake.detach(), label], dim=1))
# binary cross entropy:
errD_fake = criterionBCE(pred, target_fake+args['label_smooth_fake_D'])
# back prop
if args['D_loss'] == 'BCE':
errD = args['lambda_D']*(errD_real + errD_fake)
errD.backward()
if update:
optimizerD.step()
optimizerD.zero_grad()
# ---------------------
# L1 loss GAN
# ---------------------
netG.zero_grad()
if (args['gan_loss'] == 'l1_loss') or (args['gan_loss'] == 'l1_dice_loss'):
errG_L1 = criterionCAE(fake, data)
errG_L1 = errG_L1 * args['lambda_L1']
errG_L1.backward(retain_graph=True)
# ---------------------
# Train Generator
# ---------------------
if (args['net_D'] == 'convCapsGAN_D') or (args['net_D'] == 'conditionalCapsDcganD'):
pred = netD(torch.cat([fake, label], dim=1), args)
elif args['net_D'] == 'conditionalCapsNetD':
pred, output, discri_reconstruction, masked = netD(torch.cat([fake, label], dim=1))
# binary cross entropy loss for the generator:
errG = args['lambda_G']*criterionBCE(pred, target_real*args['label_smooth_fake_G'])
errG.backward()
if update:
optimizerG.step()
optimizerG.zero_grad()
time_elapsed = time.time() - t0
# print(['time_elapsed: ', time_elapsed])
if ((i) % args['display_every'] == 0):
print('[{:d}/{:d}][{:d}/{:d}] Elapsed_time: {:.0f}m{:.0f}s Loss_D: {:.4f} Loss_G: {:.4f} Loss_L1: {:.4f} SSIM: {:.4f}'
.format(epoch, args['epochs'], i, len(dataloader), time_elapsed // 60, time_elapsed % 60,
errD.item(), errG.item(), errG_L1.item(), ssim_value))
if ((i) % args['save_image_every'] == 0) or (i==len(dataloader)-1):
# eval mode to remove dropout and batchnorm
if not(args['noise_source'] == 'dropout') and not(args['batch_norm']):
netG.eval()
if args['noise_source'] == 'input':
val_noise = torch.randn(val_label.size()[0], args['noise_size'])
elif (args['noise_source'] == 'broadcast'):
val_noise = torch.randn(val_label.size()[0], args['noise_size'], 1)
num_copies = args['val_image_size'] // args['noise_size']
if args['val_image_size'] % args['noise_size'] == 0:
val_noise = val_noise.repeat(1, num_copies, args['val_image_size']) # specifies number of copies
val_noise = val_noise.unsqueeze(1)
else:
print('noise size is indivisible by image size')
elif (args['noise_source'] == 'broadcast_conv'):
val_noise = torch.randn(val_label.size()[0], args['noise_size'], 1, 1)
val_noise = val_noise.repeat(1, 1, args['val_image_size'], args['val_image_size']) # specifies number of copies
else:
val_noise = torch.zeros(0)
if args['cuda']:
val_noise = val_noise.cuda()
val_noise = Variable(val_noise)
args['state'] = 'val'
fake_val, _ = netG(val_label, val_noise, args)
netG.zero_grad()
vutils.save_image(fake_val.data, '%s/epoch_%03d_i_%03d_syn_samples.png' % (path, epoch, i), normalize = True)
vutils.save_image(fake.data, '%s/epoch_%03d_i_%03d_fake_train_samples.png' % (path, epoch, i), normalize = True)
vutils.save_image(label.data, '%s/epoch_%03d_i_%03d_label_train_samples.png' % (path, epoch, i), normalize = True)
if ((i) % args['save_every'] == 0):
error_D = errD.item()
error_G = errG.item()
ssim = ssim_value
all_error_D[a] = error_D
all_error_G[a] = error_G
if (args['gan_loss'] == 'l1_loss') or (args['gan_loss'] == 'l1_dice_loss'):
all_error_L1[a] = errG_L1.item()
np.save(path + '/train_error_L1.npy', all_error_L1)
all_ssim[a] = ssim
np.save(path + '/train_error_D.npy', all_error_D)
np.save(path + '/train_error_G.npy', all_error_G)
np.save(path + '/train_ssim.npy', all_ssim)
a=a+1
if all_ssim[-1] >= np.max(all_ssim):
torch.save(netG.state_dict(), '%s/ModelG_best.pt' % (path))
torch.save(netD.state_dict(), '%s/ModelD_best.pt' % (path))
args['best_ssim_model_saved'] = 'epoch_' + str(epoch) + '_itr_' + str(i)
with open(path + '/parameters.json', 'w') as file:
json.dump(args, file, indent=4, sort_keys=True)
num_it_per_epoch = (len(dataloader) // (args['save_every']))
epochs = np.arange(1, all_error_D.size + 1) / num_it_per_epoch
plt.figure()
plt.plot(epochs[:a-1], all_error_D[:a-1], label='Discriminator loss')
plt.plot(epochs[:a-1], all_error_G[:a-1], label='Generator loss')
plt.xlabel('epochs')
plt.legend()
plt.title('Loss')
plt.savefig(path + '/loss.png')
plt.close()
torch.save(netG.state_dict(), '%s/ModelG_epoch_%03d.pt' % (path, epoch))
torch.save(netD.state_dict(), '%s/ModelD_epoch_%03d.pt' % (path, epoch))
if (args['gan_loss'] == 'l1_loss') or (args['gan_loss'] == 'dice_loss') \
or (args['gan_loss'] == 'l1_dice_loss'):
plt.figure()
if (args['gan_loss'] == 'dice_loss') or (args['gan_loss'] == 'l1_dice_loss'):
plt.plot(epochs[:a-1], all_error_dice[:a-1], label='dice loss')
if (args['gan_loss'] == 'l1_loss') or (args['gan_loss'] == 'l1_dice_loss'):
plt.plot(epochs[:a-1], all_error_L1[:a-1], label='l1 loss')
plt.xlabel('epochs')
plt.legend()
plt.title('GAN loss')
plt.savefig(path + '/GAN_loss.png')
plt.close()
plt.figure()
plt.plot(epochs[:a-1], all_ssim[:a-1], label='SSIM')
plt.xlabel('epochs')
plt.legend()
plt.title('SSIM')
plt.savefig(path + '/ssim.png')
plt.close()
print('finished')