-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalgorithms.py
831 lines (574 loc) · 24.9 KB
/
algorithms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
from road_network import *
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import pickle
import random
import math
from sklearn.cluster import KMeans
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
torch.random.manual_seed(1)
random.seed(1)
np.random.seed(1)
class Dataset:
def __init__(self, data, K=10):
self.K = K
self.tt_splits = self.cross_val_splits(data, K)
self.info = {}
self.data = data
def cross_val_splits(self, data, K):
random.shuffle(data)
test_size = len(data) // K
test_sets = [data[test_size*i:test_size*(i+1)] for i in range(K)]
train_sets = [data[:test_size*i] + data[test_size*(i+1):] for i in range(K)]
return list(zip(train_sets, test_sets))
def normalize(self, column):
if column not in self.info:
self.info[column] = {}
self.info[column]['norm'] = []
for train_set, _ in self.tt_splits:
data = np.array([row[column] for row, _ in train_set if row[column] is not None])
self.info[column]['norm'].append((np.mean(data), np.std(data)))
def cluster(self, column, K):
if column not in self.info:
self.info[column] = {}
self.info[column]['cluster'] = []
for train_set, _ in self.tt_splits:
data = np.array([np.array(row[column]) for row, _ in train_set if row[column] is not None])
kmeans = KMeans(n_clusters=K, random_state=0).fit(data)
self.info[column]['cluster'].append(kmeans)
def fill_missing(self, column):
if column not in self.info:
self.info[column] = {}
self.info[column]['fill'] = []
for train_set, _ in self.tt_splits:
try:
data = np.array([float(row[column]) for row, _ in train_set if row[column] is not None])
self.info[column]['fill'].append(np.mean(data))
except:
self.info[column]['fill'].append(0)
def encode_labels(self, column):
if column not in self.info:
self.info[column] = {}
data = []
for train_set, _ in self.tt_splits:
data += [str(row[column]) for row, _ in train_set]
self.info[column]['encode'] = sorted(list(set(data)))
def encode_feature(self, feature, i):
X = []
for col, val in feature.items():
if col not in self.info:
X.append(val)
continue
# possible combos:
# fill, fill-norm, fill-cluster, norm, cluster, encode
if 'fill' in self.info[col] and 'norm' in self.info[col]:
mean, std = self.info[col]['norm'][i]
X += [1, 0] if val is None else [0, (val - mean) / std]
elif 'fill' in self.info[col] and 'cluster' in self.info[col]:
kmeans = self.info[col]['cluster'][i]
N = kmeans.n_clusters
if val is None:
X += [1] + [0] * N
else:
label = kmeans.predict([val])[0]
X += [0] + [int(j == label) for j in range(N)]
elif 'fill' in self.info[col]:
mean = self.info[col]['fill'][i]
X += [1, mean] if val is None else [0, val]
elif 'norm' in self.info[col]:
mean, std = self.info[col]['norm'][i]
X.append((val - mean) / std)
elif 'cluster' in self.info[col]:
kmeans = self.info[col]['cluster'][i]
label = kmeans.predict([val])[0]
X += [int(j == label) for j in range(kmeans.n_clusters)]
elif 'encode' in self.info[col]:
labels = self.info[col]['encode']
X += [int(val == l) for l in labels]
else:
X.append(val)
try:
return torch.Tensor(X)
except:
return torch.zeros(1)
def normalize_targets(self):
self.info['Target'] = []
for train_set, _ in self.tt_splits:
data = torch.Tensor([target for _, target in train_set])
self.info['Target'].append((torch.mean(data, dim=0), torch.std(data, dim=0)))
def encode_target(self, target, i):
return torch.Tensor(target)
def preprocess(self):
self.tt_data = []
for i, (train_set, test_set) in enumerate(self.tt_splits):
train_data = [(self.encode_feature(X,i), self.encode_target(Y,i)) for X,Y in train_set]
test_data = [(self.encode_feature(X,i), self.encode_target(Y,i)) for X,Y in test_set]
self.tt_data.append((train_data, test_data))
def feature_length(self):
return len(self.tt_data[0][0][0][0])
def target_length(self):
return len(self.tt_data[0][0][0][1])
def train_batches(self, i, size=-1):
train_set, _ = self.tt_data[i]
random.shuffle(train_set)
size = len(train_set) if size < 0 else size
return [self.make_batch(train_set[size*j:size*(j+1)], i) for j in range(math.ceil(len(train_set) / size))]
def test_batch(self, i):
_, test_set = self.tt_data[i]
return self.make_batch(test_set, i)
def make_batch(self, data, i):
M = len(data)
X = torch.zeros((M, len(data[0][0])))
Y = torch.zeros((M, len(data[0][1])))
for j in range(M):
x, y = data[j]
X[j,:] = x
Y[j,:] = y
return X,Y
def baseline_loss(self, type, index=0):
assert type in ['mean', 'median']
_ , Y_train = self.train_batches(index)[0]
_ , Y_test = self.test_batch(index)
Y_predict = torch.mean(Y_train, dim=0) if type =='mean' else torch.median(Y_train, dim=0).values
return float(torch.mean(torch.abs(Y_test - Y_predict)))
def feature_matrix(self):
data = [x for x, _ in self.data]
features = [self.encode_feature(x, 0) for x in data]
m, n = len(data), len(features[0])
X = torch.zeros((m,n))
for i in range(m):
X[i,:] = features[i]
return X
class KNearestNeighbors:
def __init__(self, road_net):
self.road_net = road_net
self.dataset = Dataset([ (self.make_feature(station.edge), self.make_target(station))
for station in road_net.stations])
self.dataset.preprocess()
def make_feature(self, edge):
return {
'ID-1' : edge.nodes[0].id,
'ID-2' : edge.nodes[0].id
}
def make_target(self, station):
return station.volume
def predict_by_node(self, node_id, K=1, index=0):
train_set, _ = self.dataset.tt_splits[index]
train_nodes = { x['ID-1'] : y for x,y in train_set }
knn_nodes = self.get_KNN(K, node_id, list(train_nodes.keys()))
return np.median(np.array([train_nodes[node] for node in knn_nodes]), axis=0)
def predict(self, edges, K=1, index=0):
vols = []
for i, edge in enumerate(edges):
print(i, '/', len(edges))
vol = self.predict_by_node(edge.nodes[1].id, K=K, index=index)
vols.append([round(v) for v in list(vol)])
return vols
def test(self, K=1, index=0, verbose=True):
if verbose:
print('Testing...')
baseline_loss = self.dataset.baseline_loss('median', index=index)
if verbose:
print('Baseline loss:', baseline_loss)
train_set, test_set = self.dataset.tt_splits[index]
sets = {'Train' : train_set, 'Test' : test_set}
loss = {}
for type, data in sets.items():
nodes = { x['ID-2'] : np.array(y) for x,y in data }
losses = []
for node_id, vol in nodes.items():
vol_hat = self.predict_by_node(node_id, K=K, index=index)
losses.append(np.mean(np.abs(vol_hat - vol)))
loss[type] = np.mean(np.array(losses))
if verbose:
print(type, 'loss:', loss[type])
return baseline_loss, loss['Train'], loss['Test']
def get_KNN(self, K, node_id, neighbors):
lengths, _ = nx.single_source_dijkstra(self.road_net.nx_graph, node_id, weight=lambda n1,n2,d: float(d['length']))
neighbor_lengths = [(id, l) for id, l in lengths.items() if id in neighbors]
neighbor_lengths += [(n, 1e10) for n in neighbors]
neighbor_lengths.sort(key=lambda x: x[1])
return [id for id, _ in neighbor_lengths[:K]]
def validation_curve(self, K_range, name):
losses = {
'train' : {'mean' : [], 'std' : []},
'test' : {'mean' : [], 'std' : []}
}
for K in K_range:
K = int(K)
print()
print('K = ', K)
print('----------')
baseline_losses = []
train_losses = []
test_losses = []
for i in range(10):
bl, trl, tel = self.test(K=K, index=i)
baseline_losses.append(bl)
train_losses.append(trl)
test_losses.append(tel)
losses['train']['mean'].append(np.mean(train_losses))
losses['train']['std'].append(np.std(train_losses))
losses['test']['mean'].append(np.mean(test_losses))
losses['test']['std'].append(np.std(test_losses))
result_dict = {
'baseline' : np.mean(baseline_losses),
'K_range' : list(K_range),
'losses' : losses
}
with open('results/' + name, 'w') as f:
f.write(str(result_dict))
def data_preprocess(dataset, type):
assert type in ['simple', 'complex']
if type == 'simple':
dataset.cluster('Location', 20)
dataset.normalize('Distance')
dataset.fill_missing('Speed')
dataset.normalize('Speed')
dataset.fill_missing('Lanes')
dataset.normalize('Lanes')
dataset.encode_labels('E/W')
dataset.encode_labels('N/S')
dataset.normalize('Speed/Dist')
dataset.normalize('Dist*Lanes')
dataset.normalize('In Degree')
dataset.normalize('Out Degree')
dataset.normalize('Betweenness')
dataset.normalize('Closeness')
dataset.preprocess()
else:
labels = ['*', 'F1', 'L1', 'R1', 'F2', 'L2', 'R2', 'B']
for L in labels[:1]:
dataset.fill_missing('Location-' + L)
dataset.cluster('Location-' + L, 20)
dataset.fill_missing('Distance-' + L)
dataset.normalize('Distance-' + L)
dataset.fill_missing('Speed-' + L)
dataset.normalize('Speed-' + L)
dataset.fill_missing('Lanes-' + L)
dataset.normalize('Lanes-' + L)
dataset.encode_labels('E/W-' + L)
dataset.encode_labels('N/S-' + L)
dataset.fill_missing('Betweenness-' + L)
dataset.normalize('Betweenness-' + L)
dataset.fill_missing('Closeness-' + L)
dataset.normalize('Closeness-' + L)
dataset.fill_missing('Arctan-' + L)
dataset.fill_missing('Speed/Dist-' + L)
dataset.normalize('Speed/Dist-' + L)
dataset.fill_missing('Dist*Lanes-' + L)
dataset.normalize('Dist*Lanes-' + L)
dataset.fill_missing('In Degree-' + L)
dataset.normalize('In Degree-' + L)
dataset.fill_missing('Out Degree-' + L)
dataset.normalize('Out Degree-' + L)
dataset.preprocess()
def data_make_feature(edge, type):
assert type in ['simple', 'complex']
if type == 'simple':
return {
'Location' : edge.location(),
'Distance' : edge.distance,
'Speed' : edge.speed_limit,
'Lanes' : edge.lanes,
'E/W' : edge.direction[0],
'N/S' : edge.direction[1],
'Arctan' : edge.arctan(),
'Speed/Dist' : edge.speed_div_dist(),
'Dist*Lanes' : edge.dist_times_lanes(),
'In Degree' : edge.in_deg,
'Out Degree' : edge.out_deg,
'Betweenness' : edge.betweenness,
'Closeness' : edge.nodes[0].closeness
}
else:
feature_dict = {}
zip_items = [('*', edge)] + list(edge.adjacency.items())
for L, E in zip_items[:1]:
if E is not None:
feature_dict.update({
'Distance-' + L : E.distance,
'Location-' + L : E.location(),
'Speed-' + L : E.speed_limit,
'Lanes-' + L : E.lanes,
'E/W-' + L : E.direction[0],
'N/S-' + L : E.direction[1],
'Betweenness-' + L : E.betweenness,
'Closeness-' + L : E.nodes[0].closeness,
'Arctan-' + L : E.arctan(),
'Speed/Dist-' + L : E.speed_div_dist(),
'Dist*Lanes-' + L : E.dist_times_lanes(),
'In Degree-' + L : E.in_deg,
'Out Degree-' + L : E.out_deg
})
else:
feature_dict.update({
'Distance-' + L : None,
'Location-' + L : None,
'Speed-' + L : None,
'Lanes-' + L : None,
'E/W-' + L : None,
'N/S-' + L : None,
'Betweenness-' + L : None,
'Closeness-' + L : None,
'Arctan-' + L : None,
'Speed/Dist-' + L : None,
'Dist*Lanes-' + L : None,
'In Degree-' + L : None,
'Out Degree-' + L : None
})
return feature_dict
class DecisionTree:
def __init__(self, road_net, type):
assert type in ['simple', 'complex']
if type == 'complex':
road_net.compute_edge_adjacency()
self.rn = road_net
self.type = type
self.dataset = Dataset([ (self.make_feature(station.edge, type), self.make_target(station))
for station in road_net.stations])
data_preprocess(self.dataset, type)
def make_feature(self, edge, type):
return data_make_feature(edge, type)
def make_target(self, station):
return station.volume
def train(self, ensemble=False,
max_depth=None,
splitter='random',
max_features=None,
n_estimators=100,
index=0):
if ensemble:
self.model = RandomForestRegressor(criterion='mae',
max_depth=max_depth, n_estimators=n_estimators, random_state=1)
else:
self.model = DecisionTreeRegressor(criterion='mae',
max_depth=max_depth,
splitter=splitter,
max_features=max_features,
random_state=1)
X_train, y_train = self.dataset.train_batches(index)[0]
self.model.fit(X_train.numpy(), y_train.numpy())
print('Testing...')
baseline_loss = self.dataset.baseline_loss('median', index=index)
print('Baseline Loss:', baseline_loss)
y_pred = self.model.predict(X_train.numpy())
train_loss = np.mean(np.abs(y_train.numpy() - y_pred))
print('Train Loss:', train_loss)
X_test, y_test = self.dataset.test_batch(index)
y_pred = self.model.predict(X_test.numpy())
test_loss = np.mean(np.abs(y_test.numpy() - y_pred))
print('Test Loss:', test_loss)
return baseline_loss, train_loss, test_loss
def predict(self, edges):
dat_info = self.dataset.info
dataset = Dataset([(self.make_feature(edge,self.type), [0]) for edge in edges])
dataset.info = dat_info
X = dataset.feature_matrix().numpy()
y = self.model.predict(X)
volumes = []
for i in range(y.shape[0]):
y_i = list(y[i,:])
volumes.append([round(vol) for vol in y_i])
return volumes
def validation_curve(self, param_ranges, ensemble, name):
param1, param2 = tuple(param_ranges.keys())
p1_range, p2_range = tuple(param_ranges.values())
losses = [{
'train' : {'mean' : [], 'std' : []},
'test' : {'mean' : [], 'std' : []}
} for p1 in p1_range]
for i, p1 in enumerate(p1_range):
for p2 in p2_range:
p1, p2 = p1, int(p2)
print()
print(param1, ',', param2, '=', p1, ',', p2)
print('----------')
baseline_losses = []
train_losses = []
test_losses = []
max_depth = (p1 if param1 == 'max_depth'
else p2 if param2 == 'max_depth'
else None)
max_features = (p1 if param1 == 'max_features'
else p2 if param2 == 'max_features'
else 'best')
n_estimators = (p1 if param1 == 'n_estimators'
else p2 if param2 == 'n_estimators'
else 1)
for j in range(10):
bl, trl, tel = self.train(
ensemble=ensemble,
max_depth=max_depth,
max_features=max_features,
n_estimators=n_estimators,
index=j)
baseline_losses.append(bl)
train_losses.append(trl)
test_losses.append(tel)
losses[i]['train']['mean'].append(np.mean(train_losses))
losses[i]['train']['std'].append(np.std(train_losses))
losses[i]['test']['mean'].append(np.mean(test_losses))
losses[i]['test']['std'].append(np.std(test_losses))
result_dict = {
'baseline' : np.mean(baseline_losses),
param1 : list(p1_range),
param2 : list(p2_range),
'losses' : losses
}
with open('results/' + name, 'w') as f:
f.write(str(result_dict))
class Model(nn.Module):
def __init__(self, input_len, output_len, hidden_layers):
super(Model, self).__init__()
layer_sizes = [input_len]
for i in range(1, hidden_layers+1):
layer_sizes.append(round(input_len + (i / (hidden_layers+1)) * (output_len - input_len)))
layer_sizes.append(output_len)
self.fc = nn.ModuleList()
for i in range(len(layer_sizes) - 1):
self.fc.append(nn.Linear(layer_sizes[i], layer_sizes[i+1]))
def forward(self, x):
for fc in self.fc[:-1]:
x = F.relu(fc(x))
return self.fc[-1](x)
class NeuralNet:
def __init__(self, road_net, type):
assert type in ['simple', 'complex']
if type == 'complex':
road_net.compute_edge_adjacency()
self.type = type
self.rn = road_net
self.dataset = Dataset([ (self.make_feature(station.edge, type), self.make_target(station))
for station in road_net.stations])
data_preprocess(self.dataset, type)
def make_feature(self, edge, type):
return data_make_feature(edge, type)
def make_target(self, station):
return station.volume
def train(self, epochs=10000, test=True, out_freq=100,
lr=1e-4, hidden_layers=15, early_stopping=True, counter_limit=5, verbose=True, index=0):
counter_limit = counter_limit if early_stopping else 10000
self.model = Model(self.dataset.feature_length(), self.dataset.target_length(), hidden_layers)
optimizer = optim.Adam(self.model.parameters(), lr=lr)
self.model.train()
results = {
'baseline_loss' : None,
'train_loss' : None,
'test_loss' : None,
'epochs' : [],
'train_history' : [],
'test_history' : []
}
counter = 0
for i in range(1, epochs+1):
losses = []
batches = self.dataset.train_batches(index, size=32)
for X,Y in batches:
optimizer.zero_grad()
Y_hat = self.model(X)
loss = torch.mean(torch.abs(Y - Y_hat))
loss.backward()
losses.append(float(loss))
optimizer.step()
if i % out_freq == 0:
train_loss = float(torch.mean(torch.Tensor(losses)))
if verbose:
print('Epoch', i)
print('---------')
print('Train loss:', train_loss)
if test:
baseline_loss, test_loss = self.test(index, verbose)
if results['test_loss'] is None or test_loss <= results['test_loss']:
results['test_loss'] = test_loss
results['train_loss'] = train_loss
results['baseline_loss'] = baseline_loss
if early_stopping:
torch.save(self.model.state_dict(), 'model.dat')
counter = 0
else:
counter += 1
results['epochs'].append(i)
results['train_history'].append(train_loss)
results['test_history'].append(test_loss)
if counter >= counter_limit:
break
self.model.train()
if verbose:
print('---------')
if early_stopping:
self.model = Model(self.dataset.feature_length(), self.dataset.target_length(), hidden_layers)
self.model.load_state_dict(torch.load('model.dat'))
print('Baseline loss:', results['baseline_loss'])
print('Train loss:', results['train_loss'])
print('Test loss:', results['test_loss'])
print()
return results
def test(self, index, verbose):
baseline_loss = self.dataset.baseline_loss('median', index=index)
if verbose:
print('Baseline loss:', baseline_loss)
self.model.eval()
with torch.no_grad():
X, Y = self.dataset.test_batch(index)
Y_hat = self.model(X)
test_loss = float(torch.mean(torch.abs(Y - Y_hat)))
if verbose:
print('Test loss:', test_loss)
return baseline_loss, test_loss
def predict(self, edges):
dat_info = self.dataset.info
dataset = Dataset([(self.make_feature(edge,self.type), [0]) for edge in edges])
dataset.info = dat_info
X = dataset.feature_matrix()
self.model.eval()
with torch.no_grad():
y = self.model(X).detach().numpy()
volumes = []
for i in range(y.shape[0]):
y_i = list(y[i,:])
volumes.append([round(vol) for vol in y_i])
return volumes
def validation_curve(self, lr_range, hl_range, name):
losses = [{
'train' : {'mean' : [], 'std' : []},
'test' : {'mean' : [], 'std' : []}
} for lr in lr_range]
for i, lr in enumerate(lr_range):
for hl in hl_range:
lr, hl = lr, int(hl)
print()
print('lr , hl =', lr, ',', hl)
print('----------')
baseline_losses = []
train_losses = []
test_losses = []
for j in range(10):
nn_results = self.train(index=j,
lr=lr, hidden_layers=hl, verbose=False)
baseline_losses.append(nn_results['baseline_loss'])
train_losses.append(nn_results['train_loss'])
test_losses.append(nn_results['test_loss'])
losses[i]['train']['mean'].append(np.mean(train_losses))
losses[i]['train']['std'].append(np.std(train_losses))
losses[i]['test']['mean'].append(np.mean(test_losses))
losses[i]['test']['std'].append(np.std(test_losses))
result_dict = {
'baseline' : np.mean(baseline_losses),
'lr' : list(lr_range),
'hidden_layers' : list(hl_range),
'losses' : losses
}
with open('results/' + name, 'w') as f:
f.write(str(result_dict))
def test_performance(self, index):
self.model.eval()
with torch.no_grad():
X_test, y_test = self.dataset.test_batch(index)
y_pred = self.model(X_test).detach().numpy()
loss_data = list(np.abs(y_test.numpy() - y_pred).reshape(-1))
return loss_data