-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmlp_neuronChange.py
163 lines (130 loc) · 4.97 KB
/
mlp_neuronChange.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
from keras.models import Sequential
from keras.layers import Dense
from keras.utils import to_categorical
from keras import optimizers
from keras import initializers
import numpy as np
from numpy import genfromtxt
import matplotlib.pyplot as plt
import math
number_input = 64
number_classes = 10
hidden_layers = 2
index_layer = 0
neurons_hidden = 1
funct_activation = 'relu'
funct_activation_output = 'softmax'
initializer_kernel=initializers.random_uniform()
initializer_bias='ones'
learning_rate = 0.005
loss_function = 'categorical_crossentropy'
net_metrics = ['accuracy']
epochs_number = 4
validation_split = 3
##################READ DATABASE - TRAIN#####################
train_read = genfromtxt('dataset/train.csv', delimiter=',')
tmp_train_data = np.array([])
tmp_train_label = np.array([])
for i in range(0, train_read.shape[0]):
last = train_read[i][-1]
tmp_train_data = np.append(tmp_train_data, train_read[i][:-1], axis=0)
tmp_train_label = np.append(tmp_train_label,last)
tmp_train_data = tmp_train_data.reshape(-1, 64)
tmp_train_label = tmp_train_label.reshape(-1,1)
#print(tmp_train_data.shape[0])
#print(tmp_train_label.shape[0])
split_train_validation_data = np.split(tmp_train_data, validation_split)
split_train_validation_label = np.split(tmp_train_label, validation_split)
train_data = np.concatenate((split_train_validation_data[0], split_train_validation_data[1]))
train_label = np.concatenate((split_train_validation_label[0], split_train_validation_label[1]))
validation_data = split_train_validation_data[2]
validation_label = split_train_validation_label[2]
#print(train_data)
#print(train_label)
#print(train_data.shape[0])
#print(train_label.shape[0])
#print(validation_data)
#print(validation_label)
#print(validation_data.shape[0])
#print(validation_label.shape[0])
train_label_one_hot = to_categorical(train_label)
validation_label_one_hot = to_categorical(validation_label)
##################READ DATABASE - TEST#####################
test_read = genfromtxt('dataset/test.csv', delimiter=',')
test_data = np.array([])
test_label = np.array([])
for i in range(0, test_read.shape[0]):
last = test_read[i][-1]
test_data = np.append(test_data, test_read[i][:-1], axis=0)
test_label = np.append(test_label,last)
test_data = test_data.reshape(-1, 64)
test_label = test_label.reshape(-1,1)
test_label_one_hot = to_categorical(test_label)
####################NORMALIZATION########################
train_min = np.amin(train_data)
train_max = np.amax(train_data)
'''
Normalization between a and b
x = (b - a)(x - min)/(max - min) + a
'''
train_data = (2*((train_data - train_min)/(train_max - train_min))) - 1
validation_data = (2*((validation_data - train_min)/(train_max - train_min))) - 1
test_data = (2*((test_data - train_min)/(train_max - train_min))) - 1
#####################CREATE MLP############################
loss_train = []
loss_validation = []
acc_train = []
acc_validation = []
max_value = 0;
max_layer = 1;
for i in range(1,64):
neurons_hidden = i
mlp = Sequential()
#First Layer and Input
mlp.add(Dense(neurons_hidden,
kernel_initializer=initializer_kernel,
bias_initializer=initializer_bias,
activation=funct_activation,
input_dim=number_input))
#All other layers
for index_layer in range(1, hidden_layers):
mlp.add(Dense(neurons_hidden,
kernel_initializer=initializer_kernel,
bias_initializer=initializer_bias,
activation=funct_activation))
#Output Layer
mlp.add(Dense(number_classes,
kernel_initializer=initializer_kernel,
bias_initializer=initializer_bias,
activation=funct_activation_output))
net_optimizer = optimizers.RMSprop(lr=learning_rate)
mlp.compile(optimizer=net_optimizer, loss=loss_function, metrics=net_metrics)
history = mlp.fit(train_data, train_label_one_hot,epochs=epochs_number, verbose=1,validation_data=(validation_data, validation_label_one_hot))
loss_train.append(history.history['loss'][-1])
loss_validation.append(history.history['val_loss'][-1])
acc_train.append(history.history['acc'][-1])
acc_validation.append(history.history['val_acc'][-1])
if math.isnan(acc_validation[-1]) or math.isnan(loss_validation[-1]):
continue
if acc_validation[-1] > max_value:
max_value = acc_validation[-1]
max_layer = i
print("Max Neurons: {}".format(max_layer))
plt.figure(figsize=[8,6])
plt.plot(loss_train, 'r')
plt.plot(loss_validation, 'b')
plt.legend(['Training loss', 'Validation Loss'],fontsize=18)
plt.xlabel('Number of neurons',fontsize=16)
plt.ylabel('Loss',fontsize=16)
plt.title('Loss Curves',fontsize=16)
plt.savefig('Loss_neuronChange.png')
plt.close()
plt.figure(figsize=[8,6])
plt.plot(acc_train)
plt.plot(acc_validation)
plt.legend(['Training accuracy', 'Validation accuracy'],fontsize=18)
plt.xlabel('Number of neurons',fontsize=16)
plt.ylabel('Accuracy',fontsize=16)
plt.title('Accuracy Curves',fontsize=16)
plt.savefig('Accuracy_neuronChange.png')
plt.close()